Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Towards a more complete view of air transportation performance combining on-time performance and passenger sentiment

Abstract : This paper aims at presenting a novel approach to airline sentiment analysis processing using Twitter data. By transforming trained sentiment classifiers into regressors, the daily sentiment distribution obtained can be represented as atrimodal Gaussian Mixture leading to a simple but efficient classification algorithm. These classes can be considered as daily sentiment scores. This classification applied to passenger generated tweets and airline generated tweets for five major US airlines highlights major difference in experience between passengers and airlines. This methodology also confirms the existing gap between flight performance and passenger experience and the necessity of considering and implementing passenger centric metrics
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-02873440
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : vendredi 19 juin 2020 - 12:09:48
Dernière modification le : mercredi 3 novembre 2021 - 08:16:24

Fichier

icrat_version_auteur.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02873440, version 1

Collections

Citation

Philippe Monmousseau, Stéphane Puechmorel, Daniel Delahaye, Aude Marzuoli, Eric Féron. Towards a more complete view of air transportation performance combining on-time performance and passenger sentiment. ICRAT 2020, 9th International Conference for Research in Air Transportation, Jun 2020, Tampa, United States. ⟨hal-02873440⟩

Partager

Métriques

Consultations de la notice

109

Téléchargements de fichiers

68