, Bureau of Transportation Statistics, About BTS

, NextGen Priorities -Joint Implementation Plan Update Including the Northeast Corridor. Federal Aviation Administration, 2017.

E. Commission and E. , Flightpath 2050: Europe's Vision for Aviation

, Maintaining Global Leadership and Serving Society's Needs ; Report of the High-Level Group on Aviation Research, ser. Policy / European Commission, Publ. Off. of the Europ. Union, p.930887434, 2011.

Y. O. Gawdiak and T. Diana, NextGen Metrics for the Joint Planning and Development Office, p.10, 2011.

A. Cook, G. Tanner, S. Cristóbal, and M. Zanin, Passenger-Oriented Enhanced Metrics, p.8, 2012.

A. Marzuoli, E. Boidot, E. Feron, and A. Srivastava, Implementing and validating air passenger-centric metrics using mobile phone data, Journal of Aerospace Information Systems, 2018.

A. Marzuoli, P. Monmousseau, and E. Feron, Passenger-centric metrics for Air Transportation leveraging mobile phone and Twitter data, Data-Driven Intelligent Transportation Workshop -IEEE International Conference on Data Mining, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02078088

. Statista, Monthly active Twitter users in the United States

H. Wang, D. Can, A. Kazemzadeh, F. Bar, and S. Narayanan, A system for real-time Twitter sentiment analysis of 2012 us presi

B. Pang, L. Lee, and S. Vaithyanathan, Thumbs up? Sentiment Classification using Machine Learning Techniques, Proceedings of the ACL-02 conference on Empirical methods in natural language processing, vol.10, pp.79-86, 2002.

A. Pak and P. Paroubek, Twitter as a Corpus for Sentiment Analysis and Opinion Mining, LREc, vol.10, pp.1320-1326, 2010.

N. F. Silva, E. R. Hruschka, and E. R. Hruschka, Tweet sentiment analysis with classifier ensembles, Decision Support Systems, vol.66, pp.170-179, 2014.

B. Pang and L. Lee, Opinion mining and sentiment analysis, Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, vol.2, 2008.

M. J. Samonte, J. M. Garcia, V. J. Lucero, and S. C. Santos, Sentiment and opinion analysis on Twitter about local airlines, Proceedings of the 3rd International Conference on Communication and Information Processing -ICCIP '17, pp.415-422, 2017.

E. Loper and S. Bird, NLTK: The Natural Language Toolkit, 2002.

C. Truica, J. Velcin, and A. Boicea, Automatic Language Identification for Romance Languages Using Stop Words and Diacritics, 2015 17th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp.243-246, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01193158

P. Monmousseau, A. Marzuoli, E. Feron, and D. Delahaye, Predicting and Analyzing US Air Traffic Delays using Passenger-centric Datasources, Thirteenth USA/Europe Air Traffic Management Research and Development Seminar (ATM2019), 2019.
URL : https://hal.archives-ouvertes.fr/hal-02178441

. Kaggle, Twitter US airline sentiment

J. Read, Using emoticons to reduce dependency in machine learning techniques for sentiment classification, Proceedings of the ACL Student Research Workshop on -ACL '05, p.43, 2005.

A. Go, R. Bhayani, and L. Huang, Twitter Sentiment Classification using Distant Supervision, CS224N project report, vol.1, 2009.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine Learning in Python, Machine Learning in Python, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

S. Roberts, D. Husmeier, I. Rezek, and W. Penny, Bayesian approaches to Gaussian mixture modeling, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.20, issue.11, pp.1133-1142, 1998.

L. Van-der-maaten and G. Hinton, Visualizing Data using t-SNE, Journal of machine learning research, vol.9, pp.2579-2605, 2008.