Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Article dans une revue

Air Traffic Representation and Analysis Through Local Covariance

Abstract : Air traffic is generally characterized by simple indicators like the number of aircraft flying over a given area or the total distance flown during a time window. As an example, these values may be used for estimating a rough number of air traffic controllers needed in a given control center or for performing economic studies. However, this approach is not adapted to more complex situations such as those encountered in airspace comparison or air traffic controllers training or for adapting dynamically the airspace configurations to the traffic conditions. An innovative representation of the traffic data, relying on a sound theoretical framework, is introduced in this work. It will pave the way to a number of tools dedicated to traffic analysis. Based on an extraction of local covariance, a grid with values in the space of symmetric positive definite matrices is obtained. It can serve as a basis of comparison or be subject to filtering and selection to obtain a digest of a traffic situation suitable for efficient complexity assessment.
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-02879206
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : mardi 23 juin 2020 - 15:54:46
Dernière modification le : mercredi 3 novembre 2021 - 08:09:29

Fichier

nicol.pdf
Publication financée par une institution

Identifiants

  • HAL Id : hal-02879206, version 1

Collections

Citation

Georges Mykoniatis, Florence Nicol, Stéphane Puechmorel. Air Traffic Representation and Analysis Through Local Covariance. International Journal On Advances in Intelligent Systems, 2018, 11 (3-4), pp.268-278. ⟨hal-02879206⟩

Partager

Métriques

Consultations de la notice

37

Téléchargements de fichiers

24