Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Feature Driven Combination of Animated Vector Field Visualizations

Abstract : Animated visualizations are one of the methods for finding and understanding complex structures of time‐dependent vector fields. Many visualization designs can be used to this end, such as streamlines, vector glyphs, and image‐based techniques. While all such designs can depict any vector field, their effectiveness in highlighting particular field aspects has not been fully explored. To fill this gap, we compare three animated vector field visualization techniques, OLIC, IBFV, and particles, for a critical point detection‐and‐classification task through a user study. Our results show that the effectiveness of the studied techniques depends on the nature of the critical points. We use these results to design a new flow visualization technique that combines all studied techniques in a single view by locally using the most effective technique for the patterns present in the flow data at that location. A second user study shows that our technique is more efficient and less error prone than the three other techniques used individually for the critical point detection task
Type de document :
Article dans une revue
Liste complète des métadonnées

Littérature citée [74 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-02907118
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : mercredi 29 juillet 2020 - 09:18:57
Dernière modification le : mercredi 3 novembre 2021 - 04:18:00
Archivage à long terme le : : mardi 1 décembre 2020 - 07:24:19

Identifiants

Collections

Citation

María-Jesús Lobo, Alexandru C Telea, Christophe Hurter. Feature Driven Combination of Animated Vector Field Visualizations. Computer Graphics Forum, Wiley, 2020, 39 (3), pp.429-441. ⟨10.1111/cgf.13992⟩. ⟨hal-02907118⟩

Partager

Métriques

Consultations de la notice

84

Téléchargements de fichiers

377