Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Deep Trajectory Clustering with Autoencoders

Abstract : Identification and characterisation of air traffic flows is an important research topic with many applications areas including decision-making support tools, airspace design or traffic flow management. Trajectory clustering is an unsupervised data-driven approach used to automatically identify air traffic flows in trajectory data. Long-established trajectory clustering techniques applied for this purpose are mostly based on classical algorithms like DBSCAN, which depend on distance functions capturing only local relations in the data space. Recent advances in Deep Learning have shown the potential of using deep clustering techniques to discover hidden and more complex relations that often lie in low-dimensional latent spaces. The goal of this paper is to explore the application of deep trajectory clustering based on autoencoders to the problem of flow identification. Thus, we present two clustering techniques (artefact and DCEC) and show how they embed trajectories into the latent spaces in order to facilitate the clustering task.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-02916241
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : lundi 17 août 2020 - 15:33:43
Dernière modification le : mercredi 3 novembre 2021 - 08:11:02
Archivage à long terme le : : lundi 30 novembre 2020 - 20:51:12

Fichier

deep_clustering.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02916241, version 1

Collections

Citation

Xavier Olive, Luis Basora, Benoit Viry, Richard Alligier. Deep Trajectory Clustering with Autoencoders. ICRAT 2020, 9th International Conference for Research in Air Transportation, Sep 2020, Tampa, United States. ⟨hal-02916241⟩

Partager

Métriques

Consultations de la notice

105

Téléchargements de fichiers

977