Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Article dans une revue

Interactive Structure-aware Blending of Diverse Edge Bundling Visualizations

Abstract : Many edge bundling techniques (i.e., data simplification as a support for data visualization and decision making) exist but they are not directly applicable to any kind of dataset and their parameters are often too abstract and difficult to set up. As a result, this hinders the user ability to create efficient aggregated visualizations. To address these issues, we investigated a novel way of handling visual aggregation with a task-driven and user-centered approach. Given a graph, our approach produces a decluttered view as follows: first, the user investigates different edge bundling results and specifies areas, where certain edge bundling techniques would provide user-desired results. Second, our system then computes a smooth and structural preserving transition between these specified areas. Lastly, the user can further fine-tune the global visualization with a direct manipulation technique to remove the local ambiguity and to apply different visual deformations. In this paper, we provide details for our design rationale and implementation. Also, we show how our algorithm gives more suitable results compared to current edge bundling techniques, and in the end, we provide concrete instances of usages, where the algorithm combines various edge bundling results to support diverse data exploration and visualizations.
Type de document :
Article dans une revue
Liste complète des métadonnées
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : mardi 5 janvier 2021 - 20:09:14
Dernière modification le : mercredi 3 novembre 2021 - 08:18:29
Archivage à long terme le : : mercredi 7 avril 2021 - 09:34:58


Fichiers produits par l'(les) auteur(s)




Yunhai Wang, Mingliang Xue, Yanyan Wang, Xinyuan Yan, Baoquan Chen, et al.. Interactive Structure-aware Blending of Diverse Edge Bundling Visualizations. IEEE Transactions on Visualization and Computer Graphics, 2020, 26 (1), pp.687-696. ⟨10.1109/TVCG.2019.2934805⟩. ⟨hal-02917109⟩



Consultations de la notice


Téléchargements de fichiers