Arrêt de service lundi 11 juillet de 12h30 à 13h : tous les sites du CCSD (HAL, Epiciences, SciencesConf, AureHAL) seront inaccessibles (branchement réseau à modifier)
Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Real-time Fault Detection on Small Fixed-Wing UAVs using Machine Learning

Murat Bronz 1 Elgiz Baskaya 1, 2 Daniel Delahaye 1 Stéphane Puechmorel 1 
2 ENGIE Ineo - Safran RPAS Chair
SAFRAN Group, Aéroports de Paris, ENAC - Ecole Nationale de l'Aviation Civile
Abstract : In this study, we have highlighted the main challenges of real-time fault diagnosis on small scale fixed-wing UAVs. The feasibility of real-time fault prediction has been shown in real flight conditions experiencing noisy measurements, communication limitations, and wrapped wing structure that breaks the geometric symmetry. A total of eleven flight logs have been recorded and shared publicly for future potential use by other researchers on fault and anomaly detection. Our proposed method uses a data driven algorithm, SVM, in order to classify the behavior of the vehicle in nominal flight phase and faulty phase. Feasibility of a basic binary classification is shown, despite the well-known over-fitting problem caused by limited data. We have shown that geometrical imperfections that are common in small UAVs can cause particular effects on the prediction performance, and we used it in our advantage to improve the detection on multi-class classification. The SVM algorithm with proposed feature trajectories was capable to detect variation of loss of control effectiveness faults up to an accuracy of 95% in real flights. The data-set and all related programs can be downloaded from: (https://github.com/mrtbrnz/fault_detection).
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-enac.archives-ouvertes.fr/hal-03018053
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : mercredi 2 décembre 2020 - 13:55:49
Dernière modification le : mercredi 3 novembre 2021 - 08:18:39
Archivage à long terme le : : mercredi 3 mars 2021 - 19:22:43

Fichier

Bronz_DASC2020.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Murat Bronz, Elgiz Baskaya, Daniel Delahaye, Stéphane Puechmorel. Real-time Fault Detection on Small Fixed-Wing UAVs using Machine Learning. DASC 2020 AIAA/IEEE 39th Digital Avionics Systems Conference, Oct 2020, San Antonio, United States. pp.ISBN:978-1-7281-8088-5, ⟨10.1109/DASC50938.2020.9256800⟩. ⟨hal-03018053⟩

Partager

Métriques

Consultations de la notice

308

Téléchargements de fichiers

711