Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Communication dans un congrès

A Simulation Method of Personnel Evacuation Management Based on Mulit-Agent Models

Abstract : To better guide people to evacuate in a given area, this paper proposes a multi-agent emergency evacuation simulation system for the adjustment of people’s downward flow in a dynamic disaster environment. The main goal of this paper for managing emergency evacuation is to build a basic model that can simulate the location distribution of people, the speed of personnel, the pedestrian flow, road congestion and other situations. The proposed system mainly combines two multi-agent-based methods, i.e., cellular automata (CA) model and ripple-spreading algorithm (RSA). The CA model simulates the road network and the flow of people, the improved RSA calculates the optimal evacuation path for each people and improves the system calculation efficiency. With the proposed system, we test some specific control measures for high-risk sections in a given area by analyzing evacuation time, road congestion, etc., and the data after the control measures are compared with those before the control measures to verify the effectiveness of the proposed system in the evacuation process. The results can be used to assess the effectiveness of emergency control measures in a given area, such as crowed scenic spot.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-enac.archives-ouvertes.fr/hal-03112886
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : jeudi 4 février 2021 - 08:26:18
Dernière modification le : mercredi 3 novembre 2021 - 08:09:29
Archivage à long terme le : : mercredi 5 mai 2021 - 18:09:31

Fichier

A Simulation Method of Personn...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Zhang Yingfei, Zhang Gongpeng, Ruixin Wang, Hu Xiaobing. A Simulation Method of Personnel Evacuation Management Based on Mulit-Agent Models. SSCI 2020 IEEE Symposium Series on Computational Intelligence, Dec 2020, Canberra, Australia. pp.1634-1639, ⟨10.1109/ssci47803.2020.9308274⟩. ⟨hal-03112886⟩

Partager

Métriques

Consultations de la notice

216

Téléchargements de fichiers

61