Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

Global exact optimization for covering a rectangle with 6 circles

Abstract : We address the problem of covering a rectangle with six identical circles, whose radius is to be minimized. We focus on open cases from Melissen and Schuur (Discrete Appl Math 99:149–156, 2000). Depending on the rectangle side lengths, different configurations of the circles, corresponding to the different ways they are placed, yield the optimal covering. We prove the optimality of the two configurations corresponding to open cases. For the first one, we propose a mathematical mixed-integer nonlinear optimization formulation, that allows one to compute global optimal solutions. For the second one, we provide an analytical expression of the optimal radius as a function of one of the rectangle side lengths. All open cases are thus closed for the optimal covering of a rectangle with six circles.
Type de document :
Article dans une revue
Liste complète des métadonnées

https://hal-enac.archives-ouvertes.fr/hal-03202927
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : mardi 20 avril 2021 - 12:37:15
Dernière modification le : vendredi 1 avril 2022 - 03:57:52

Identifiants

Citation

Sonia Cafieri, Pierre Hansen, Frédéric Messine. Global exact optimization for covering a rectangle with 6 circles. Journal of Global Optimization, Springer Verlag, 2021, ⟨10.1007/s10898-021-01007-0⟩. ⟨hal-03202927⟩

Partager

Métriques

Consultations de la notice

59