Global exact optimization for covering a rectangle with 6 circles - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Global Optimization Année : 2021

Global exact optimization for covering a rectangle with 6 circles

(1) , (2) , (3)
1
2
3

Résumé

We address the problem of covering a rectangle with six identical circles, whose radius is to be minimized. We focus on open cases from Melissen and Schuur (Discrete Appl Math 99:149–156, 2000). Depending on the rectangle side lengths, different configurations of the circles, corresponding to the different ways they are placed, yield the optimal covering. We prove the optimality of the two configurations corresponding to open cases. For the first one, we propose a mathematical mixed-integer nonlinear optimization formulation, that allows one to compute global optimal solutions. For the second one, we provide an analytical expression of the optimal radius as a function of one of the rectangle side lengths. All open cases are thus closed for the optimal covering of a rectangle with six circles.
Fichier non déposé

Dates et versions

hal-03202927 , version 1 (20-04-2021)

Identifiants

Citer

Sonia Cafieri, Pierre Hansen, Frédéric Messine. Global exact optimization for covering a rectangle with 6 circles. Journal of Global Optimization, 2021, ⟨10.1007/s10898-021-01007-0⟩. ⟨hal-03202927⟩
76 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More