Skip to Main content Skip to Navigation
Journal articles

Probabilistic Robustness Estimates for Feed-forward Neural Networks

Abstract : Robustness of deep neural networks is a critical issue in practical applications. In the general case of feed-forward neural networks (including convolutional deep neural network architectures), under random noise attacks, we propose to study the probability that the output of the network deviates from its nominal value by a given threshold. We derive a simple concentration inequality for the propagation of the input uncertainty through the network using the Cramer-Chernoff method and estimates of the local variation of the neural network mapping computed at the training points. We further discuss and exploit the resulting condition on the network to regularize the loss function during training. Finally, we assess the proposed tail probability estimates empirically on various public datasets and show that the observed robustness is very well estimated by the proposed method.
Complete list of metadata

https://hal-enac.archives-ouvertes.fr/hal-03213024
Contributor : Nicolas Couellan <>
Submitted on : Friday, April 30, 2021 - 10:20:46 AM
Last modification on : Sunday, May 2, 2021 - 3:28:56 AM

File

ProbEstimNN.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-03213024, version 1

Citation

Nicolas Couellan. Probabilistic Robustness Estimates for Feed-forward Neural Networks. Neural Networks, Elsevier, In press. ⟨hal-03213024⟩

Share

Metrics

Record views

24

Files downloads

7