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Abstract: A semi-parametric regression methodology is formulated to identify the unsteady lift
characteristics of a small UAS undergoing dynamic stall. Based on the trailing edge separation
model of Leishmann and Beddoes, the nonlinear evolution of the separation point is formulated
so that it can be estimated by non-parametric Machine Learning methods. Validation of the
methodology is presented with the identification of the lift coefficient based on quasi-steady
wind tunnel tests.
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1. INTRODUCTION

This paper investigates the estimation methods from the
Machine Learning (ML) community and their potential
benefits for the identification of a small Unmanned Air-
craft System (UAS) stall model. ML is indeed an active
field of research that is able to challenge the existing
tools developed in system identification. It could be in
particular extremely helpful for the ongoing certification
and integration into civil airspace of UASs found in EU
regulations (EU, May 2019), where arises a clear need
for reliable full-envelope models of UAS flight dynamics,
and in particular during upset situations (Cunis et al.,
2019). Although the UAS community benefits from the
full-scale aircraft identification experience, it has several
specifics that may lead to different features compared to
what could be expected from a regular transport aircraft.
Regarding the stall phenomenon in particular, the low
Reynolds number and the aerodynamic shape suggest a
behaviour distinct from aircraft stall literature. The aim
is therefore to consider ML tools to provide a picture of
the physical phenomena involved.

Because flight dynamics and aerodynamic models have
been studied in depth over the years, we do not con-
sider here full black-box identification methods like for
instance the Regression Trees (RT) in Kumar and Ghosh
(2019). The idea is to keep the known parametric struc-
ture based on aerodynamic knowledge and to estimate
the phenomenological part with a non-parametric method.
Such an approach is usually referred to as semi-parametric
regression – see e.g. Ruppert et al. (2003). The goal is to
take advantage of ML tools for the non-parametric part,
knowing that the parametric part is linear with respect to
the coefficients. It should be noted that the authors made
the choice to consider the ML tools here for a cultural

purpose rather than for technical reasons. In practice,
methods not coming from the ML community may perform
as well or better. In Janot et al. (2017), for instance,
the authors successfully performed the semi-parametric
identification of a robot with a State Dependant Parameter
(SDP) estimation method.

Before diving into the stall modelling problem, the scope of
the ML identification must be defined as ML tools cover an
extensive range of problems. It is here intended to provide
a non-parametric formulation for parts of the stall model
based on dedicated tests. The training is therefore super-
vised. In addition, the limited size of the datasets recorded
forces us to set aside deep learning tools and only consider
regression techniques instead of classification ones. These
restrictions lead us to consider three estimation methods:
Support Vector Regression (SVR), Gaussian Process (GP)
and Regression Trees (RT).

The paper is organized as follows: Sections 2 and 3 give
overviews of stall modelling and ML methods respectively.
They are combined in Section 4 to develop our solution
which is evaluated on experimental data in Section 5.
Finally, Section 6 provides concluding remarks.

2. STALL MODEL IDENTIFICATION

2.1 Stall Modelling

Small UASs are designed with increasing control perfor-
mances that can quickly bring the aircraft to the limits of
its flight envelop. Thus, it becomes mandatory to take into
account many nonlinear aerodynamic phenomenons, such
as stall. Stall is defined as the reduction of lift experienced
by the aircraft as its angle of attack increases. The lift
force, which is the component of the aerodynamic force
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Fig. 1. Typical dynamic stall behaviour, based on (8)

orthogonal to the air velocity and in the symmetry plane
of the aircraft, is given by

L =
1

2
ρV 2 · S · CL(α, α̇, ...) (1)

where ρ is the air density, S the wing area, V the velocity
relative to the air and CL the lift coefficient. In particular,
this lift coefficient houses all the non-linear effects as a
function of its surface deflections (elevator, ailerons, flaps,
etc.), landing gears position and its aerodynamic configu-
ration (sideslip angle, angle of attack α and its derivative
α̇, etc.). It is this relation that will be determined in this
study, although for simplification, the dependence of the
lift coefficient with respect to all but the angle of attack
and its derivative will be neglected.

Stall arises from the flow separation caused by an adverse
pressure on the upper surface of the wing. As such, the
stall behaviour depends on the flight condition and the
airfoil characteristics. Moreover, previous works (see e.g.
Fischenberg (1995)) have shown that it can be divided
into static and dynamic stall in the way shown Fig. 1.
In the case of a non-steady flow, when the airfoil rapidly
changes angle of attack for instance, the flow remains
attached to the airfoil at a higher angle of attack than what
was the case in steady conditions: stall appears delayed.
Additionally, the same phenomenon is present on the way
back when the aircraft is pitching nose down, where the
flow reattaches at a lower angle of attack than in steady
conditions, forming a hysteresis loop.

Since the first definition of dynamic stall, see e.g. Mc-
Croskey et al. (1976), numerous works have been con-
ducted considering various airfoils and flow conditions.
Amongst the various models developed, one can cite the
semi-empirical Leishman-Beddoes model (Leishman and
Beddoes, 1989), which is composed of four complemen-
tary modules to derive the unsteady lift, drag and pitch
moment. Such a model is referred to as ”semi-empirical”
because one part derives from aerodynamic principles and
the other is obtained by means of dynamic and static
experiments. This study focuses on this model that is
commonly used in the helicopter and wind turbine com-
munities.

Table 1. Reduced frequency ranges

Range Flow type

k = 0 steady
0 < k ≤ 0.05 quasi-steady
0.05 < k ≤ 0.2 unsteady

k > 0.2 highly unsteady

McCullough and Gault (1951) described three types of
static stall at low speed (where the compressibility phe-
nomena can be neglected):

• Trailing edge stall: the flow separation begins at the
trailing-edge and the separation point moves forward;

• Leading edge stall: a sudden loss of lift after the burst
of a leading edge laminar separation bubble;

• Thin airfoil stall: the flow separation begins at the
leading-edge with reattachment and the separation
point moves backward.

In Gault (1957), the author gives more elements regarding
the stall type that can be expected from the airfoil shape
and the Reynolds number.

2.2 Leishman-Beddoes Model

The complete Leishman-Beddoes model is divided in four
sub-systems: unsteady attached flow, trailing edge flow
separation, leading edge flow separation and vortex shed-
ding (Leishman and Beddoes, 1989), where the use of
empirical time constants and deficiency functions avoids
the complex representation of viscous effects. In addition,
according to Leishman (2006), the unsteadiness of the flow
can be classified with the reduced frequency k given by

k =
ωc̄

2V
(2)

where ω is the angular velocity and c̄ the mean aerody-
namic chord. Table 1 relates the flow type to this reduced
frequency. As an example, Fig. 1 is given for a quasi-steady
flow with k = 0.01. Since the experimental results in
Section 5 were obtained under quasi-steady flow condition,
only the trailing edge flow separation sub-model will be
considered here. The eventual leading edge flow separa-
tion, modelled by a delay in the onset of stall and where
no change in behaviour is expected, is then encompassed
by this model by maintaining a completely attached flow.
This trailing edge flow separation is modelled using the
Kirchhoff and Helmholtz theory

CL = CL0
+ CLα

(
1 +
√
f

2

)2

α (3)

where CL0
is the zero angle of attack lift coefficient, CLα

the attached lift curve slope and f is the flow separation
point on the airfoil surface (0 ≤ f ≤ 1) such that the flow
is attached with f = 1 and the separation is complete with
f = 0. Leishman and Beddoes (1989) suggested to deduce
the relationship between f and α from static tests.

As highlighted in Larsen et al. (2007), the negative point
of the model (3) is the sensitivity of the lift coefficient with
respect to the separation point:

∂CL
∂f

=
1

4

(
1 +

1√
f

)
CLαα (4)

Because this sensitivity is infinite when the separation
point approaches the leading edge (f → 0+), the esti-
mation problem is most likely ill-conditioned. To avoid



this difficulty, Larsen et al. (2007) suggested the following
transformation

2f = 1 + cos(h) (5)

such that when the separation point is at the trailing and
leading edge, we have h = 0 and h = π respectively. The
lift coefficient can then be rewritten as:

CL = CL0
+ CLαcos4

(
1

4
h

)
sin(α) · cos(α). (6)

Where as explained by Uhlig and Selig (2017), the trigono-
metric term for the lift curve slope CLα was replaced with
cos(α) · sin(α) to be more consistent with the flat plate
theory at high angles of attack. With the small angles
assumption, the model (6) is equivalent to the original (3).

2.3 Parametric Stall

In Goman and Khrabrov (1994), the authors suggested
that the separation point dynamic can be described by
the following first-order ordinary differential equation:

τ1ḟ(t) + f(t) = fs (α− τ2α̇) (7)

where τ1 is the time lag corresponding to transient aero-
dynamic effects, τ2 is the time lag of the flow separa-
tion/reattachment and fs is the model for the steady-
state separation. That function can be obtained in a non-
parametric way from static wind tunnel measurements, as
in Uhlig and Selig (2017).

An alternative solution, used for transport aircraft iden-
tification, is to parametrise fs. One can cite the work of
Fan and Lutze (1996) who developed a parametric model
relying on an exponential function and including the pitch
rate influence. Fischenberg (1995) proposed a model based
on the tanh function such that

fs =
1

2
(1− tanh [a1 (α− τ2α̇− α∗)]) (8)

where a1 is a shape parameter describing the abruptness
of the transition and α∗ is the angle of attack for f = 1/2.
Fig. 1 depicts this model with τ1 = 0.1s, τ2 = 0.3s,
a1 = 20rad−1, α∗ = 15◦ and α(t) = 10◦ + 10◦ sin(ωt)
(ω = 0.67rad.s−1).

3. MACHINE LEARNING REGRESSION

It should be noted that the ML methods described here can
be seen as parametric estimation approaches. Nonetheless,
since they include many more parameters than the gray
box models developed for stall modeling, we consider them
as non-parametric solutions.

3.1 Support Vector Machine Regression

Support Vector Machine (SVM), developed by Vapnik
(1995), consists in finding the optimal hyper-plane that
deviates from the training points by a value no greater
than a margin ε and which is as flat as possible. Though
the method was originally dedicated to classification, it
can be applied in a regression perspective. The method is
said to be ε-insensitive because its goal is to minimize the
following criterion

J(w) =
1

2
wᵀw (9)

s.t. |yi − f(w,xi)| ≤ ε, ∀i

where w is the parameters vector which regroups the
coefficients defining the non-parametric function f to be
estimated, yi ∈ R and xi ∈ Rd are the dependent and
independent variables respectively, both at sampling point
i. Because it is possible that no such function f exists,
the concept of soft margin is introduced such that the
minimization problem becomes

J(w) =
1

2
wᵀw + C

N∑
i=1

(ξi + ξ∗i ) (10)

s.t.


yi − f(w, xi) ≤ ε+ ξi, ∀i
−yi + f(w, xi) ≤ ε+ ξ∗i , ∀i
ξi ≥ 0, ξ∗i ≥ 0, ∀i

where ξi and ξ∗i are slack variables, C is the box constraint
and N is the number of observations. In practice, the
solution is easier to find in its Lagrange dual formulation.

The function f can either be linear with respect to the
coefficients or nonlinear. In the latter case, one can use
the kernel trick to implicitly map the data into a high-
dimensional feature space function of the kernel where the
regression problem becomes linear. To solve the quadratic
problem, various dedicated algorithms have been devel-
oped such as the Sequential Minimal Optimization (SMO)
(Fan et al., 2005).

3.2 Gaussian Process Regression

The stochastic process defined by
{
g(x),x ∈ Rd

}
is a

Gaussian Process (GP) if the joint distribution of the
random variables g(x1), . . . , g(xN ) is Gaussian. The mean
value and the covariance functions of the GP are respec-
tively defined as

E [g(x)] = m(x),

Cov [g(x), g(x′)] = K(x,x′).

A GP Regression (GPR) model is defined such that

∀i, yi = l(xi)β + g(xi) + νi (11)

where l is an explicit basis function, β is the vector
of coefficients in this basis, g is a GP such that g ∼
GP (0,K(x,x′)) and ν is the error term such as ν ∼
N (0, σ2). The principle of this model, compared with an
usual linear regression model, is to capture the smoothness
of the response with the GP covariance function. This
covariance function is represented by a kernel function
parametrised by the coefficients γ. Therefore, the GPR,
also called Kriging, has to estimate the feature space
coefficients β, the noise variance σ2 and the covariance
hyper-parameters γ. This estimation is performed by op-
timizing a Maximum Likelihood criterion (Rasmussen and
Williams, 2005).

3.3 Regression Trees

Classification And Regression Trees (CART) are deci-
sion tree algorithms dedicated to predictive modelling
(Breiman et al., 1984). They are based on the principle
of recursive partitioning. At each node of the tree, a
test is performed on the independent variable xi and,
depending on the result, the algorithm continues to one
or another subbranch (one of two in the most common
case of binary trees). Thus, the space of the independent



variables is successively divided into smaller regions, also
called cells, that form a partition. To each cell is associated
a terminal node, also called leaf, to which is assigned a
numerical value in the case of CART. In classic regression
trees, the value of the leaf L is simply the mean of the
dependent measurements whose independent counterparts
lie in the associated cell yL = 1

nL

∑nL
i=1 yi with nL the

number of such measurements. Thus, the resulting model
is piecewise-constant. In order to split or merge the nodes,
several rules are applied but the basic principle is to select
the operation that minimises a given cost function such as
the MSE. Various algorithms exist depending on the cost
function, the selected optimizer and the stopping criterion.

4. SEMI-PARAMETRIC IDENTIFICATION

Based on the brief literature review on stall modelling
from Section 2, the goal of the semi-parametric regression
is to estimate both the vector θ = [CL0 CLα]

ᵀ
on the

parametric side and the relation defining the separation
point f(α, α̇) on the non-parametric side. Following the de-
velopments in Section 2.2, the formulation (6) is favoured
to avoid the sensitivity issue when f → 0+. As has been
seen Section 2.3, the non-parametric part of the model can
be estimated beforehand based on dedicated static tests.
Our objective is nonetheless to estimate both parametric
and non-parametric components with one dynamic test in
order to reduce the workload and the use of experimental
facilities.

The following algorithm is then proposed:

(1) Initialization. Select an initial estimate of the pa-

rameters θ̂0 =
[
ĈL0 ĈLα

]ᵀ
.

(2) Iteration. The subscript i stands for the iteration
number.
(a) Compute:

• the static residuals

εi(t) = CL(t)− ĈL0
,

• the multiplicative components

λi(t) =
εi(t)

ĈLα · sinα(t) · cosα(t)
,

• the pseudo-measurements

hmi (t) = 4 · acos(λi(t)
1/4).

(b) Estimate the non-parametric model ĥi(t) based
on hmi (t) with the selected ML method.

(c) Compute the new parametric coefficients θ̂i
based on (6) with the Least Squares method using

the non-parametric estimate ĥi(t).

(d) Check for convergence using the update on θ̂i.
(3) Convergence. Compute the estimation error of the

parametric component and construct the estimated
separation point trajectory based on (5).

It would be tempting to estimate the multiplicative com-
ponents directly in a non-parametric way. However, the
coefficient CLα and the relation between the separation
point and the angle of attack f(α) would then be uniden-
tifiable.

Applying the algorithm above directly could however re-
sult in improper results due to non-respected constraints

of the problem arising from both errors in the initial
estimates and the unconstrained nature of the ML tools.
As such, the following two security mechanisms are imple-
mented:

• A modification of the multiplicative components, λ̄i,
to clip it in the range [1/4, 1] in accordance with (3):

λ̄i(t) =


1 if λi(t) > 1

1/4 if λi(t) < 1/4

λi(t) otherwise

• A capped value under the limit αl, below which the
stall is considered impossible to avoid issues arising
from the division by ”sinα · cosα” in λi(t):

¯̄λi(t) =

{
1 if |α| < αl
λ̄i(t) otherwise

This new value ¯̄λ(t) is then the one used to compute
the pseudo-measure hmi (t) in step (2a) of the iterative
algorithm.

5. EXPERIMENTAL RESULTS

5.1 Experimental Setup

The semi-parametric estimation is applied to experimental
data from a single wing in a wind tunnel. As already
stated, a single dependency on the angle of attack α and
its change rate α̇ is assumed here. For the three non-
parametric methods (SVR, GP and RT), the implementa-

tion of the Statistics and Machine Learning Toolbox
TM

of
MATLAB R© are used with default input parameters, with
the exception of the SVR, where Gaussian kernel func-
tions where used instead of the default linear ones. When
available, the input data was standardised (SVR/GP).

Data was recorded during seven open wind tunnel exper-
iments on a single aileron-less straight wing with NACA
profile 0012, chord 0.15m and span 0.5m, placed perpen-
dicular to the wind flow as to get no sideslip. The relative
wind was generated constant and uniform for the duration
of each experiment, while the angle of attack of the wing
was progressively increased from 0◦ to 35◦ at a speed of
approximately 10◦/s and back to 0◦ at 12◦/s. Two wind
velocities of 7.5m/s and 10m/s were tested, respectively
with three and four experiments, and the wind velocity
was sensed by a Pitot tube located ahead of the wing.
This setup gives reduced frequencies between k = 0.0013
and k = 0.0021, positioning the experiment firmly in the
quasi-steady domain. The lift coefficients CL were derived
from lift force measurements L and wind velocity V using
(1). The data was recorded with a sampling frequency
between 35Hz and 74Hz and then filtered by a second order
Butterworth filter with a critical frequency of 1Hz.

During training, 20% of data selected at random was left
out to be used for validation. It was chosen to select
the validation dataset at random due to the small overall
dataset (only seven, all different, experiments) where each
experiment is susceptible to bring important information.

5.2 Global Stall Estimation

The hyper-parameter of the suggested methodology, αl,
was set to 6.5◦. This value was chosen based on the data
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Fig. 2. Global model fitting using the SVR non-parametric
method on the validation dataset

at hand and proved to be sufficiently low as to impact the
process as little as possible while still efficiently filtering
the low-alpha effect. Additionally, the initial parametric

coefficients were set to ĈL0
= −0.07 and ĈLα = 0.07deg−1

determined using the shape of the lift coefficient between
0◦ and 10◦.

The first attempt is illustrated Fig. 2 for the SVR method.
Immediately, one can note that the method seems to be
biased in its estimate of the parametric coefficients. The
parametric model being so simple, it can be reasonably
assumed that the fault lies on the non-parametric ML
learning of the separation point. Investigating the learnt

relationship between the pseudo-measure ĥ(t) and the ab-
scissae α(t) and α̇(t) indeed shows that the SVM regression
with the default parameters fails to capture fine variations
of the pseudo-measure. In addition, although the other two
(not presented here for brevity) do not include this same
bias they include strange artefacts reducing the overall pre-
cision of the fitted model, and in particular in proximity of
the aerodynamic hysteresis. This second issue is attributed
to the ML algorithms putting a greater than expected
weight on the rate α̇(t) due to the low variability of the
measurements, since the experiments were conducted at
quasi-constant rate and with only two values, one going
forward and one going backward. The foreseen solution
to this is to separate the problem into two sub-problems,
respectively for the forward and backward motion and
learn h(t) as a function of the sole angle of attack α(t).

5.3 Separated Stall Estimation

Table 2 summarizes the results of this new method with
each of its three variants by providing the computation
time, the estimated parameters, as well as the Goodness
of Fit (GoF) for both the estimated lift coefficient and
separation point. It was chosen in this case to use for
GoF the Normalized Root Mean Square Error (NRMSE)
evaluated on the validation dataset.

As can be seen, the metrics indicate that the GP is the
best fit of the three ML methods for our problem. It
manages an impressive GoF of 94.08% on the validation
dataset for the separation point, which translates into an

Table 2. Comparison of the separated stall
estimation results for each of the ML methods

ML Execution Parameters Validation GoF

method time ĈL0 ĈLα CL f

SVR 13s 0.018 0.060 80.96% 91.34%
GP 12min37s -0.054 0.074 88.04% 94.08%
RT 1min43s -0.056 0.075 85.22% 92.66%

88.04% GoF on the lift coefficient. The RT method is
closely behind with marginally lower GoFs and returned
the same parametric coefficients, comforting the idea that
both methods indeed reached the desired values. The RT
is however more than seven times faster than the GP, an
advantage one could leverage if there were a need for quick
estimates and a continuous solution were not required.
Finally, the SVR suffered from the same bias as in the
previous test, returning different parameters than the two
others which translated itself into strong differences in
the learnt separation point. On top of that, the GoFs of
SVR were still lower than that of the others, indicating
that SVR with the parameters used in our example is not
adapted (the authors would like to precise that one could
very likely get usable results with properly selected SVR
parameters but such parameters have so far eluded them).

Fig. 3 shows the results for the GP method. As noted
before, the RT method yielded almost identical results,
only with a non-continuous form (this result is presented
Fig. 4). Although this result is very close to what was
expected a few details must be discussed. First, at higher
angles of attack the estimated flow separation point does
not go all the way to 0 but rather reaches an asymptote of
approximately 8%. This gap comes from neglected effects
in the model that might not be able to precisely describe
the behaviour of the particular wing used in our exper-
iment at such angles of attack. Secondly, the behaviour
of the estimated flow separation point on the forward
path seems a bit odd in the interval [6.5◦, 10.5◦], where
it slowly decreases to 89% whereas the flow was expected
to still be attached at this point. This is attributed once
more to the model from (3), and particularly to its linear
form at lower angles of attack. Our dataset indeed has a
shape closer to that of a quadratic function with equation
CL = −0.001743 α2 + 0.08813 α − 0.07657. Due to the
process used, such an error is then necessarily transferred
to the non-parametric estimator which integrates it in its
learning, returning this result. These two shortcomings
support the idea that although the model from Kirchhoff’s
theory is globally able to represent the behaviour of our
wing one should be wary that the results might not be
perfectly accurate. In addition, the shape of the separation
point function in the [10◦, 20◦] interval does not seem to
follow a hyperbolic tangent form as expected from (8),
furthering the idea that models from the literature may
not be adapted to UASs.

6. CONCLUSION

In this paper, we utilized non-parametric regression meth-
ods from the Machine Learning (ML) community to help
model the behaviour of a small UAS during stall while
keeping a physical structure able to provide insight for
aerodynamic engineers. The experimental results of the
introduced methodology shows that:
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Fig. 3. Separated method fitting using the GP non-
parametric method on the validation dataset
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Fig. 4. Separated method fitting using the RT non-
parametric method on the validation dataset

• ML methods are effective algorithms that benefit
from being restrained to a subset of the problem based
on physical analysis;
• A semi-parametric estimation of the dynamic stall

can be performed with a single dynamic test.

Future work will address other aerodynamic coefficients
and explore further the possibilities of ML methods with
an evaluation of the hyper-parameters influence. In partic-
ular, the model should be confronted to separation point
measurements to validate the non-parametric learning.
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