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Abstract—Weighted voting is a conventional approach to
improving the performance of replicated systems based on
commonly-used majority quorum systems in heterogeneous en-
vironments. In long-lived systems, a weight reassignment pro-
tocol is required to reassign weights over time in order to
accommodate performance variations accordingly. The weight
reassignment protocol should be consensus-free in asynchronous
failure-prone systems because of the impossibility of solving
consensus in such systems. This paper presents an efficient
consensus-free weight reassignment protocol for atomic storage
systems in heterogeneous, dynamic, and asynchronous message-
passing systems. An experimental evaluation shows that the
proposed protocol improves the performance of atomic read/write
storage implemented by majority quorum systems compared with
previous solutions.

Index Terms—weighted voting, majority quorum system, repli-
cation, heterogeneous environment, dynamic distributed system

I Introduction

The atomic read/write storage (or simply atomic storage,
a.k.a. atomic register [1]) is a fundamental building block for
practical distributed storage and file systems (e.g., [2], [3]).
Atomic storage allows concurrent processes, each possibly
running a different algorithm, to share data atomically through
a variable accessed by read/write (r/w) operations. Quorum
systems [4] are a well-known abstraction for implementing
atomic storage [5]. A quorum system is a collection of sets
called quorums such that each one is a subset of processes,
and the intersection property that states every two quorums
always intersect should be satisfied. By implementing atomic
storage using quorum systems, atomicity can be guaranteed
using the intersection property [6]. Moreover, it is not required
to execute r/w operations in all processes; each r/w operation
should be executed by all processes of one quorum, improving
the system’s fault tolerance and availability.

There exist many types of quorum systems such as grids
[7], [8], trees [9], hierarchical [10], and the simple majority
quorum system (SMQS) [11]. In the SMQS, every quorum
consists of a strict majority of processes. Most atomic storages
based on quorum systems (e.g., [5], [6], [12]) utilize the SMQS
due to its simplicity and optimal fault tolerance; however,

the SMQS can impact both quorum latency1 and throughput
[11]. The reason for this performance impact is that an SMQS
does not consider the heterogeneity of processes or network
connections. If it takes such heterogeneity into account, its
latency and throughput are likely to be improved.

Contrarily to SMQS, the weighted majority quorum system
(WMQS) was proposed to cope with heterogeneity. In WMQS,
each process is assigned a weight that is in accordance with the
process’s latency or throughput determined by a monitoring
system [14], [15]; every quorum consists of a set of processes
such that the sum of their weights is greater than half of the
total weight of processes in the system. The following example
helps to grasp the difference between SMQS and WMQS in
systems with heterogeneous latencies and throughput.

Example 1. Let p1, p2, p3, and p4 be the processes comprising
the system and c be a client. Consider the two following
scenarios. For the first scenario, assume that the average round-
trip latencies between the client and processes p1, p2, p3, and
p4 are 20ms, 45ms, 100ms, and 140ms, respectively. In
another scenario, assume that the throughput of processes
p1, p2, p3, and p4 are 1000, 800, 400, and 200 operation/sec,
respectively. Let 1.4, 1.1, 0.9, 0.6 be the assigned weights
by the monitoring system to processes p1, p2, p3, and p4,
respectively. The quorum latency using SMQS is 100ms while
using WMQS is 45ms (Figure 1). The throughput of the
system based SMQS and WMQS is 600 and 800 operation/sec,
respectively2. Both scenarios show the advantage of using the
WMQS over SMQS.

Although the WMQS improves the quorum latency in
contrast to the SMQS, it has a significant drawback for real,
dynamic, and long-lived systems, where the latencies and
throughput of processes might change over time. Indeed, using
time-invariant weights is not suitable for such systems, so the
processes’ weights must be reassigned over time. However,
reassigning processes’ weights is a challenging problem in

1Quorum latency for a request in a quorum system is the time interval
between sending the request (to a quorum, some quorums, or a subset of
processes) until receiving the responses from a quorum of processes [11],
[13].

2Throughput is computed using quoracle library [11]; the code written
using quoracle to compute throughput can be found in the full version of the
paper [16].978-1-7281-8326-8/20/$31.00 ©2020 European Union
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Fig. 1: The quorum latency of SMQS vs. WMQS

dynamic asynchronous failure-prone systems due to the fol-
lowing requirements.
a) Guaranteeing the atomicity property. Weight reassignments

and r/w operations might be concurrent. If it is the case,
some r/w operations might be performed based on the most
up-to-date weights, and others might be performed based on
previous weights, not ensuring thus the atomicity property.

b)Guaranteeing the liveness of atomic storage. If one allows
arbitrary weight reassignment, the system’s liveness might
not be guaranteed. For instance, in Figure 1b, assume that
process p1’s weight is reassigned to 2.7 while the weights
of other processes are not reassigned. If process p1 fails,
no quorum can be constituted, leading to the loss of the
system’s liveness. Note that the other processes’ weights
cannot be reassigned anymore due to the asynchrony of the
system. Indeed, process p1 can be slow, and by reassigning
other processes’ weights, two disjoint weighted quorums
might be constituted.

c) Demanding a consensus-free and wait-free solution. For
reassigning weights, a consensus-based protocol or similar
primitives cannot be used because it is known that consensus
is not solvable in asynchronous failure-prone systems [17].
Besides, the ABD protocol [6] showed that atomic storage
could be implemented in static asynchronous systems in a
wait-free [18] manner and without requiring consensus.

d)Efficiency. To have an efficient storage system, it is required
to separate weight reassignment protocol from r/w protocols
[19].
Atomic storage with consensus-based weight reassignment

protocols (e.g., [20], [21]) does not satisfy the third require-
ment. Likewise, if consensus-based reconfiguration protocols
(like RAMBO [12]) are adapted to be used as a weight
reassignment protocol, the third requirement is not satisfied.
Consensus-free reconfiguration protocols, like DynaStore [22],
SpSn [23], and FreeStore [5] (more protocols can be found
in [24], [25], [19]), proposed to change the set of processes
that compromise the system by using two special functions:
join and leave. Servers can join/leave the system by calling
these functions. Such protocols can be adapted to be used as a
consensus-free solution for reassigning the processes’ weights.
To do so, one can change join and leave functions to increase
and decrease functions, respectively such that each server can
request to increase/decrease its weight using increase/decrease
functions. However, such protocols might create unacceptable
states in which the liveness of atomic storage cannot be
guaranteed (see Example 2).

Example 2. Let p1, p2, p3, and p4 be the processes comprising
the system; also, let the initial weight of each process be
one (Figure 2). Two concurrent requests increase(p1, 1.4)
and decrease(p4, 0.7) are issued by processes p1 and p4,
respectively, to increase p1’s weight by 1.4 and to decrease
p4’s weight by 0.7. Each request creates an intermediate
(auxiliary) state. Although each of created intermediate states
is acceptable, their combination is unacceptable because the
system might not be live (consider the case when process p1
fails).

1, 1, 1, 1

2.4, 1, 1, 1

1, 1, 1, 0.3

incre
ase(p1, 1.

4)

decrease(p4 , 0.7)

2.4, 1, 1, 0.3

Fig. 2: An example to show that reconfiguration protocols (like
DynaStore, SpSn, and FreeStore) might create unacceptable
states if they are adapted to be used as a weight reassignment
protocol. Each oval (resp. dashed oval) is a state (resp. an
intermediate state); ith number of each state determines pi’s
weight, where i ∈ {1, 2, 3, 4}.

SmartMerge [26] is the only consensus-free reconfiguration
protocol that avoids creating unacceptable states; however,
for each r/w operation, it requires communicating with a
quorum of processes to find the most up-to-date configuration.
Therefore, it might incur significant performance losses in
terms of latency and throughput, i.e., it does not satisfy the
fourth requirement since the r/w operations are not completely
separated from the reconfiguration protocol. If SmartMerge is
adapted to be used as a weight reassignment protocol, we still
have the same problem.

To the best of our knowledge, no protocol is presented
explicitly to solve weight reassignment in a consensus-free
manner for atomic storage. This paper presents a novel and
efficient consensus-free weight reassignment protocol that
autonomously reassigns the processes’ weights for atomic
storage (the atomic storage is based on the ABD protocol). The
weight reassignment protocol avoids creating unacceptable
states. In contrast to other solutions, the distinguishing feature
of our protocol is that for executing each r/w operation, it
is not required to communicate with a quorum of processes
to find the most up-to-date processes’ weights leading to
efficiency improvement. To evaluate the performance of an
atomic storage based on our weight reassignment protocol,
we compared our approach to atomic storages based on (1)
the (static) ABD that uses an SMQS, (2) RAMBO, and (3)
SmartMerge. Our experimental results show that our approach
is 38%, 17%, 27% more efficient than the (static) ABD,
RAMBO, and SmartMerge, respectively.

Organization of the paper. Section II presents the system
model and some preliminary definitions and properties used
in the paper. In Section III, we describe our weight reassign-
ment protocol. We present the dynamic atomic storage that
utilizes our weight reassignment protocol in Section IV. The



performance evaluation is shown in Section V. We present the
conclusion and future work in Section VI.

II Preliminaries
In this section, we present the system model of our paper.

Also, we present the preliminary definitions and properties of
our weight reassignment protocol and dynamic atomic storage
system.

System Model
We consider a distributed system composed by two non-

overlapping sets of processes– a finite set of n servers
S = {s1, s2, . . . , sn} and an infinite set of clients C =
{c1, c2, . . . }. Each process has a unique identifier. Every client
or server knows the set of servers. Clients access the storage
system provided by servers by executing r/w operations. The
processes communicate by message passing, and the links
reliably connect all pairs of processes. Processes are prone to
crash failures. A process is called correct if it is not crashed.
The system is asynchronous, i.e., we make no assumptions
about processing times or message transmission delays. How-
ever, each process has access to a local clock; processes’
local clocks are not synchronized and do not have any bounds
on their drifts, being nothing more than counters that keep
increasing. The interactions between processes are assumed
to take place over a timespan T ⊂ R+ called the lifetime of
the system.

Weight Reassignment Definitions and Properties
Views. During the system’s lifetime, a sequence of views
σ = 〈v0, v1, . . . 〉 is installed in the system to reassign servers’
weights. The system starts in view v0 called the initial view.
The successor (resp. predecessor) of any view vk for 0 ≤ k
(resp. 1 ≤ k) is vk+1 = vk.succ (resp. vk−1 = vk.pred). We
say a view v is installed in the system if a few correct servers
consider v as their current view (see definition below). We
denote the current view of any server si by si.cview. Note
that the current views of servers might be different from the
installed view in the system. When a non-initial view vk+1

(0 ≤ k) is installed, we say that vk+1.pred was uninstalled
from the system. At any time t ∈ T , we define lastview
to be the last view installed in the system. Since lastview
is the last installed view in the system, lastview.succ =⊥.
The weights of servers are not reassigned during any view vk
(0 ≤ k) and might be reassigned at the time of uninstalling
vk and installing vk+1.

Installing a view. To install a view in the system, at least
one server should request it. Each server si can only request
to install view si.cview.succ. To do so, si sends a message
〈change_view, si.cview.succ〉 to other servers. Each server
sj sends each received message 〈change_view, v〉 to other
servers if it had not sent such a message previously. Then, each
server si sends message 〈state_update, ∗, ∗, ∗, si.cview,w〉3

3We use * for a parameter when its value is not important.

to other servers, where the last parameter stands for si’s
weight in si.cview (we explain the algorithm for changing
the views in further detail in Section III). Each server si
can install view si.cview.succ as soon as receiving mes-
sages 〈state_update, ∗, ∗, ∗, v, w〉 from a weighted majority
of servers with views v = si.cview. As soon as at least one
server installs a view v such that ∀ s ∈ S : s.cview ≤ v, we
say that view v is installed in the system.

Comparing two views. We say that view w is more up-to-
date than view v if the following recursive function returns
yes by passing (v, w) as input. We use the notation v < w to
state that view w is more up-to-date than view v.

function more_up_to_date(v, w)
v ← v.succ
if v = w then return yes
else if v =⊥ then return no
else return more_up_to_date(v, w)

Our protocol’s assumptions and properties. The following
assumptions and properties are required in our weight reas-
signment protocol. From now on, wl, wu, WT, and f state the
lower bound of servers’ weights, the upper bound of servers’
weights, the total weight of servers, and the maximum number
of failed servers, respectively.

Assumption 1 The initial weight of each server is equal to one.
Formally, ∀ si ∈ S : si.v0.weight = 1.

Assumption 2 The values of wl and wu are n/(2 × (n − f))
and n/(2f), respectively.

Assumption 3 In each quorum, the total weight of servers is
greater than n/2.

Assumption 4 The number of views that are requested to be
installed in the system is finite. Formally, |σ| = m, where
m ∈ N and σ is the sequence of installed views.

Assumption 4 is used in all reconfiguration protocols pre-
sented for asynchronous systems such as RAMBO, DynaStore,
SpSn, FreeStore, and SmartMerge. Its reason is that it is
impossible to reconfigure a storage system infinitely many
times while guaranteeing the liveness of the storage system
[27].

Property 1 The total weight of servers is bounded by n in any
view v ∈ σ. Formally, ∀ v ∈ σ,

∑
si∈S si.v.weight ≤ n.

Property 2 The weight of each server in every view should be
greater than wl and less than wu. Formally, ∀ v ∈ σ, ∀ si ∈
S : wl < si.v.weight < wu.

If a system relies on Assumption 2, Assumption 3, Property
1, and Property 2, we can show that there is a quorum of
correct servers, even if f servers crash (in the worst case, f
servers crash so there are n−f correct servers, each one with
weight wl; since (n − f) × wl > n/2, at least a quorum of
servers can be constituted). Consequently, unacceptable states
(like in Example 2) are not created.



Assumptions related to WMQS. The following assumptions
are required to have performance gains by using WMQS.

Assumption 5 During the system’s lifetime: 2f + 1 ≤ n.

This assumption is the same as the one used in other weight
reassignment protocols, like WHEAT [28] and AWARE [14].
Indeed, this assumption states that there are a few additional
spare servers, enabling the system to make progress without
needing to access a majority of servers.

Assumption 6 Constant wu should be defined in such a way
that 1 ≤ wu.

The goal of WMQS is to constitute quorums with a mi-
nority of high-weighted servers to improve performance. To
constitute a quorum with a minority of servers, it is required
that 1 ≤ wu. The reason for having such a requirement is as
follows. Due to Assumption 3, the total weight of servers is
greater than n/2 in each quorum. To have a quorum with a
minority of servers, it is necessary (but not sufficient) to have
at least one server with a weight greater than equal to 1.

Monitoring system. In order to reassign servers’ weights, the
latencies of the server to server and client to server communi-
cations should be monitored. To this end, each server uses a
local monitor module (like the one presented in AWARE [14])
that is responsible for evaluating and gathering information
about latencies and giving scores to servers. We denote the
latency score of server sk computed using the monitoring
system of server si by si.lscores.sk (1 ≤ k ≤ n). Note that it
might be possible that si.lscores.sk 6= sj .lscores.sk, at any
time t. Any server si can compare its latency with another
server sj using latency scores. For instance, from server si’s
point of view, the latency of server sj is greater than si’s
latency if si.lscores.si < si.lscores.sj .

Dynamic Storage Definitions and Properties
Views vs. r/w operations. At any time t ∈ T , r/w operations
can only be executed in view lastview. At the time of
uninstalling any view v, r/w operations are disabled on servers
with view v. The operations are enabled after installing view
v.succ.

Definition (Atomic register [29]). Assume two read operations
r1 and r2 executed by correct clients. Consider that r1 termi-
nates before r2 initiates. If r1 reads a value α from register
R, then either r2 reads α or r2 reads a more up-to-date value
than α.

Dynamic storage. A dynamic storage satisfies the following
properties: (1) the r/w protocols should implement an atomic
register (Definition II), (2) every r/w operation executed by
a correct client eventually terminates, (3) the r/w operations
that are disabled on servers to install a view will eventually be
enabled, (4) if any server si installs a non-initial view v, some
server has requested to install view v, (5) reassigning weights
are possible during the lifetime of the system, i.e., the weight
reassignment protocol satisfies the liveness property.

III Weight Reassignment Protocol
In this section, we describe our weight reassignment pro-

tocol. The protocol has two essential dependent algorithms:
pairwise weight reassignment and view changer. In the fol-
lowing, we describe these algorithms starting with pairwise
weight reassignment. Then, we present the main properties of
the weight reassignment protocol.

Pairwise Weight Reassignment
The default weight of servers in each view is one. How-

ever, for each succeeding view, any server might reassign its
default weight. As a result, each server might have different
weights in distinct views. Each server si to reassign its
default weight associated with a view v (si.cview < v)
should participate in at least one pairwise weight reassignment.
Pairwise weight reassignment is an algorithm in which two
servers collaborate to reassign their weights associated with a
view. Each pairwise weight reassignment pwr is characterized
by a quadruple (pwr_receiver, pwr_sender, w, v) such that
for view v, a server called pwr_sender decreases its weight
associated with view v by weight w and sends w in a message
to another server called pwr_receiver that has lower latency;
pwr_receiver increases its weight associated with v by weight
w after receiving the message containing w. In this way, the
servers that have lower latencies might become high-weighted
servers leading to improving the performance.

Each server should satisfy the lower and upper bounds
defined in Assumption 2 and Property 2. In other words, a
server does not participate in a pairwise weight reassignment if
its weight does not meet the lower and upper bounds. Besides,
the total weight of the system is not changed by reassigning
the weights in a pairwise manner; therefore, Property 1 can
be satisfied as well. Consequently, unacceptable states cannot
be created.

The pseudo-code of pairwise weight reassignment can be
found in Algorithm 1. Each pairwise weight reassignment is
started by sending a request issued by a server that wants to
be the pwr_receiver (Lines 5-12). For simplicity, we assume
that every requested weight is equal to a constant ε, i.e., for
every pairwise weight reassignment pwr = (∗, ∗, w, ∗), w = ε.
Moreover, we assume that each server si can participate in
a pairwise weight reassignment pwr as the pwr_receiver if
v = si.cview.succ, where pwr = (si, ∗, ∗, v). In other words,
each server can only be a pwr_receiver for its succeeding
view. Server si should meet the following conditions to be
allowed to send a request to server sj to start a pairwise weight
reassignment for view v.
C1R) View v should be equal to the succeeding view of server
si. Formally, si.cview.succ = v (Lines 6 and 12).

C2R) Server si has not participated in any operation related
to si.cview.succ. This can be ensured by a variable of
Algorithm 2 (Lines 7-8).

C3R) Each server is allowed to send a request to another server
that has a greater latency score. Formally, si.lscores.si <
si.lscores.sj (Line 9).



C4R) Each server is allowed to send a request if its
weight does not exceed the upper bound wu de-
fined in Property 2. Formally, get_weight(cview.succ) +
get_requested_weight(cview.succ) +ε < wu. Function
get_weight(v) is used to determine the weight associated
with view v, and get_requested_weight(v) is a function
to determine the total weight of requested weights that their
responses have not received yet for view v (Line 10).
If the above conditions are met, server si is allowed to send

a request by a message 〈propose_pwr, si.cview.succ, ε〉 to
sever sj (Line 12). By sending this message, we say that server
si proposes a pairwise weight reassignment to server sj for
view v = si.cview.succ. Besides, server si adds the pairwise
weight reassignment to a set si.pwr_requests to meet C4R
(Line 11). Each server si meets the following conditions by
receiving any message 〈propose_pwr, v, ε〉 from server sj .
C1S) View v should be as up-to-date as si.cview.succ. For-

mally, si.cview.succ ≤ v (Line 15).
C2S) Server si has not participated in any operation related

to si.v (Lines 16-17).
C3S) The latency score of si should be greater than sj .

Formally, si.lscores.sj < si.lscores.si (Line 18).
C4S) Each server is allowed to accept a request if its weight

does not get less than wl to satisfy Property 2. Formally, wl
< get_weight(view.succ) −ε (Line 19).
If the above conditions are met, server si executes a com-

mand pwrs ← pwrs ∪ {(sj , si, v,−ε)} to store the pairwise
weight reassignment associated with view v (Line 20). Then,
server si sends message 〈accept_pwr, v, ε〉 to server sj (Line
21). By sending this message, we say that server si accepts the
pairwise weight reassignment. Moreover, the pairwise weight
assignment terminates for server si. For simplicity, we omitted
the part that server si does not accept the pairwise weight
reassignment.

Server si meets conditions C1R and C2R by receiving
any message 〈accept_pwr, v, ε〉 from server sj (Lines 23-
25). If the conditions are met, server si executes a command
pwrs ← pwrs ∪ {(si, sj , v, ε)} to store the pairwise weight
reassignment associated with view v (Line 26). Also, server
si removes the terminated pairwise weight reassignment from
set pwr_requests (Line 27). At this point, we say that the
pairwise weight reassignment terminates for server si.

View Changer
Each server can request to change the installed view in the

system and change its current view by using an algorithm
called the view changer algorithm. Algorithm 2 is the pseudo-
code of the view changer algorithm. In the following, we
describe how this algorithm works.

How servers can request to change a view. Each server
si for each view v has a timeout (Line 1 of Algorithm
2). When the timeout of view si.cview finishes, server si
sends a request to other servers to change si.cview to
si.cview.succ and stores si.cview.succ in a set denoted by
si.rchange_views (Lines 12-13). Such a request is sent by a

message 〈change_view, si.cview.succ〉. Note that in practice,
such a timeout should be big enough so that the views are
changed rarely to satisfy Assumption 4.

How a server can change its current view. Each server si,
by receiving any message 〈change_view, view〉, stores view
in a set denoted by si.rchange_views (line 30). As soon as
si.cview.succ ∈ si.rchange_views, server si starts to change
its view (line 15). To do so, server si must do the following
steps: (S1) Sending message 〈change_view, view〉 to other
servers if it had not been sent yet. Set schange_views is
used to store sent messages tagged with change_view to be
sure that a message is not sent more than once (Line 18). (S2)
Disabling r/w operations (Line 19). (S3) Informing Algorithm
1 that some operations related to view si.cview.succ are
processing to safety Conditions C2R and C2S (Line 20).
(S4) Updating the states (registers) of servers (Lines 21-
26). Each server has a register; in this step, the registers of
servers with view view are synchronized. To do so, server
si reads its register state (say, ς) (Line 21). Then, server si
sends message 〈state_update, ς, si.cview, si.cview.weight〉
to other servers (Line 22). Server si waits until receiving mes-
sages 〈state_update, ∗, si.cview, ∗〉 from a weighted majority
of servers (Line 24). Finally, server si computes and stores
the new state of its register (Lines 25-27). (S5) Changing the
view (Line 28). (S6) Enabling r/w operations (Line 29).

Example 3. Figure 3 illustrates an example of executing
some pairwise weight reassignments and the view changer
algorithm. In this example, S = {s1, s2, s3, s4, s5}. Server
s1 proposes a pairwise weight reassignment to server s4 and
another one to server s5 for view v2. Also, server s2 proposes
a pairwise weight reassignment to server s5 for view v2.
The proposed pairwise weight reassignments are accepted by
servers s4 and s5. At time t, the timeout of view v1 for
server s1 finishes. Then, server s1 sends a message tagged
with change_view to other servers. After receiving server
si’s message, to change the view, other servers send message
change_view as well. Server s3 is the first server that changes
its view from v1 to v2 at time t′; after that, other servers
change their views as well. The weight of servers s1, s4, and
s5 in view v2 are 1 + 2ε, 1 − ε, and 1 − 2ε, respectively.
Although the pairwise weight reassignment proposed by server
s2 is accepted, it does not affect s2’s weight because s2 had
participated in view v2 at the time of receiving the accept
message; accordingly, the total weight of servers in view v2
is WT− ε until view v2 is uninstalled. Since server s3 has not
participated in any pairwise weight reassignment, its weight
in view v2 is equal to its default weight.

Properties of the Weight Reassignment Protocol

The most important property of the presented weight re-
assignment protocol is that each server knows its up-to-date
weight. Therefore, if a client sends a r/w request to a server, the
server can include its weight to its response. Then, the client
can decide whether a quorum of servers is constituted based



Algorithm 1 Pairwise weight reassignment - server si
variables
1) pwrs← ∅ . a set for storing pairwise weight reassignments
2) pwr_requests← ∅ . a set for storing requested pairwise weight reassignments

functions
3) get_weight(view) ≡ 1 + sum

(
{w | (∗, ∗, v, w) ∈ pwrs and view = v}

)
. a function to compute si.view.weight

4) get_requested_weight(view) ≡ sum
(
{w | (∗, ∗, v, w) ∈ pwr_requests and view = v}

)
while forever
5) atomic . atomic execution of lines 6-12; si tries to be a pwr_receiver
6) cview ← get_cview() of Algorithm 2
7) dirty_views← get_dirty_views() of Algorithm 2
8) if cview.succ /∈ dirty_views . si should not participate in any operation related to cview.succ (C2R)
9) if ∃ sj : si.lscores.si < si.lscores.sj . si tries to find a server sj with a greater latency score (C3R)

10) if get_weight(cview.succ) + get_requested_weight(cview.succ) + ε < wu . si’s weight should not exceed wu (C4R)
11) pwr_requests← pwr_requests ∪ {(si, sj , cview.succ, ε)} . the sent request is stored in set pwr_requests
12) send message 〈propose_pwr, cview.succ, ε〉 to server sj
upon receipt of message 〈propose_pwr, view, ε〉 from server sj . si is the pwr_sender
13) atomic . atomic execution of lines 14-21
14) cview ← get_cview() of Algorithm 2
15) if cview.succ ≤ view . view should be as up-to-date as cview.succ (C1S)
16) dirty_views← get_dirty_views() of Algorithm 2
17) if view /∈ dirty_views . si should not participate in any operation related to view (C2S)
18) if si.lscores.sj < si.lscores.si . sj should has a lower latency than si (C3S)
19) if wl < get_weight(view.succ)− ε . si’s weight should not get less than wl (C4S)
20) pwrs← pwrs ∪ {(sj , si, view,−ε)} . storing the pairwise weight reassignment
21) send message 〈accept_pwr, view, ε〉 to server sj
upon receipt of message 〈accept_pwr, view, ε〉 from server sj . si is the pwr_receiver
22) atomic . atomic execution of lines 23-27
23) cview ← get_cview() of Algorithm 2
24) if cview.succ = view . meeting Condition C1R
25) if view /∈ dirty_views . si has not participated in any operation related to view
26) pwrs← pwrs ∪ {(si, sj , view, ε)} . storing the pairwise weight reassignment
27) pwr_requests← pwr_requests \ {(si, sj , view, ε)} . removing the terminated pwr form pwr_requests

1− 2ε
v2

v2

v2

v2

v2

v1
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s1 v1

s5 v0 v1

t t′

Fig. 3: An example of executing some pairwise weight reas-
signments and the view changer algorithm. The weight of each
server in view v2 is shown at the top of the view.

on the received responses from servers. The other properties
of the protocol are as follows (see [16] for the proofs):

– Let view v be the current view of a server s, i.e., s.cview =
v. Server s installs view v.succ if at least a weighted
majority of servers including s had uninstalled view v.

– There is only one installed view in the system. In other
words, if a view w is installed in the system, any previously
installed view v < w was uninstalled and will not be
installed anymore.

– Let s and s′ be two correct servers such that: (1) s.cview =
vj , (2) s′.cview = vi, (3) vi < vj , (4) after uninstalling
view vi, the sequence of views installed by server s is

〈vi+1, . . . , vj−1, vj〉, and (5) the current view of server
s′ is less than equal to the current views of all correct
servers. Server s′ installs the same sequence of views
〈vi+1, . . . , vj−1, vj〉 eventually.

– Let lastview = vk at time t such that vk is the k + 1th

view installed in the system, where 0 ≤ k. There is only
one sequence of views σ = 〈v0, v1, . . . , vk−1, vk〉 from v0
to vk such that vi = vi−1.succ for any 1 ≤ i ≤ k.

– Let v be the last installed view in the system. View v will
eventually be changed.

– The algorithm is live, i.e., servers can change their weights
over time.

IV Read/Write Protocols

In this paper we extend the (static) ABD protocol [6]
to present a dynamic weighted atomic storage system that
provides atomic r/w protocols. Algorithm 3 describes r/w
protocols executed by clients. Besides, Algorithm 4 describes
how a server processes r/w operations. The main differences
between the original ABD protocol and the extended version
are as follows.

1) Each client has a variable cview denoting its current view
and initialized with view v0 (Line 1 of Algorithm 3). Each
client adds its current view to every r/w request; moreover,



Algorithm 2 View changer - server si
variables
1) cview ← v0, set a timeout for cview . a variable to store the current view of si
2) rchange_views← ∅ . a set to store received change_views
3) schange_views← ∅ . a set to store sent change_views
4) state_updates← ∅ . a set to store received state_updates
5) dirty_views← {v0} . a set to store the views that si has participated in; it is used to meet Conditions C2R and C2S in Algorithm 1

functions
6) sum_weights(view) ≡ sum

(
{w | (∗, ∗, ∗, ∗, v, w) ∈ state_updates and view = v}

)
7) maxts(view) ≡ max

(
{t | (∗, ∗, t, ∗, v, ∗) ∈ state_updates and view = v}

)
8) maxcid(view, ts) ≡ max

(
{c | (∗, ∗, t, c, v, ∗) ∈ state_updates and view = v and ts = t}

)
9) val_maxts_maxcid(view, ts, cid) ≡ {val | (∗, val, t, c, v, ∗) ∈ state_updates and view = v and ts = t and cid = c}

10) get_cview() ≡ cview . this function returns the current view of si
11) get_dirty_views() ≡ dirty_views . this function returns the views that si has participated in
while forever
12) if the timeout for view si.cview finishes . the condition that should be satisfied to request for changing the current view
13) send message 〈change_view, cview.succ〉 to other servers, rchange_views← rchange_views ∪ {view}
14) schange_views← schange_views ∪ {cview.succ} . the sent request is stored to avoid sending it again
15) if cview.succ ∈ rchange_views . meeting if there is a request for changing the current view to the succeeding view
16) if cview.succ /∈ schange_views . if the request for changing the current view is not sent yet, it should be sent
17) send message 〈change_view, cview.succ〉 to other servers
18) schange_views← schange_views ∪ {cview.succ} . the sent request is stored to avoid sending it again
19) disable the execution of r/w operations of Algorithm 4 . r/w operations are disabled to change the view safely
20) dirty_views← dirty_views ∪ {cview.succ} . si is participated in view cview.succ ...

. ... hence, it is required to notify Algorithm 1 (Conditions C2R and C2S)
21) (ts, cid, val)← get_ts_cid_val() of Algorithm 4 . reading the current state of si’s register
22) send message 〈state_update, (val, ts, cid), cview, cview.weight〉 to other servers
23) state_updates← state_updates ∪ {(si, val, ts, cid, cview, cview.weight)}
24) wait until n/2 < sum_weights(cview) . waiting until a weighted majority of servers with view cview respond
25) maxts← max_timestamp(cview), maxcid← max_cid(cview,maxts)
26) val← val_maxts_maxcid(cview,maxts,maxcid)
27) set_ts_cid_val(maxts,maxcid, val) of Algorithm 4 . writing the new state of si’s register
28) cview ← cview.succ, set a timeout for cview . chaining the view
29) enable the execution of r/w operations
upon receipt of message 〈change_view, view〉
30) rchange_views← rchange_views ∪ {view}
upon receipt of message 〈state_update, (val, ts, cid), view,weight〉 from server s
31) state_updates← state_updates ∪ {(s, val, ts, cid, view,weight)}

each client sends its r/w requests to all servers (Line 5 of
Algorithm 3).

2) After receiving each r/w request r, each server s determines
its current view (s.cview) by calling function get_cview()
from Algorithm 2, and sets a variable weight to ⊥ (Lines 5
and 9 of Algorithm 4). For write requests, if the current view
of each request is the same as s.cview, server s executes
the request (Lines 11-12 of Algorithm 4). Additionally,
server s resets the value of variable weight by calling
function get_weight(s.cview) from Algorithm 1 (Line 13
of Algorithm 4). Similarly, for read requests, if the current
view of each request is the same as s.cview, server s resets
the value of variable weight (Line 7 of Algorithm 4). Then,
server s adds s.cview and weight to its response of the
client that issued the request.

3) Each client updates its current view as soon as it receives a
more up-to-date view than its current view and restarts the
executing operation (Lines 12-14 and 30-32 of Algorithm
3).

4) Clients consider the weights of servers to decide whether
a quorum is constituted (Lines 15 and 33 of Algorithm 3).

Correctness
We can prove our storage system satisfies the properties

defined in Section II (see [16] for the proofs). In other words,
every r/w operation executed by a correct client eventually
terminates, and the r/w protocols of our weighted storage
implement an atomic r/w register (Definition II).

V Performance Evaluation
In this section, we present a performance evaluation of the

atomic storage based on our weight reassignment protocol
to quantify its quorum latency when compared with atomic
storage systems based on the following cases: (1) the (static)
ABD [6] that uses an SMQS, (2) RAMBO [12] (a consensus-
based reconfiguration protocol), and (3) SmartMerge [5] (a
consensus-free reconfiguration protocol). We selected Smart-
Merge because it avoids unacceptable states in contrast to
other consensus-free reconfiguration protocols (e.g., [5], [22],
[23]). We implemented prototypes of the ABD, RAMBO, and
SmartMerge protocols in the python programming language.
Besides, we used KOLLAPS [30], a fully distributed network
emulator, to create the network and links’ latencies.



Algorithm 3 ABD - client ci
variables
1) opCnt← 0, cview ← v0

functions to r/w the atomic storage
2) read() ≡ read_write(⊥)
3) write(value) ≡ read_write(value)

function read_write(value)
ABD Phase 1

4) opCnt← opCnt+ 1
5) send 〈read, opCnt, cview〉 to all servers
6) msgs← ∅
7) repeat
8) upon receipt of message 〈readack, val, ts, cid, opCnt, v, w〉
9) if cview = v

10) msgs← msgs ∪
{
(val, ts, cid, opCnt, v, w)

}
11) else
12) if cview < v
13) cview ← v

14) read_write(value) . restart the operation
15) until n/2 ≤ sum

(
{w | (∗, ∗, ∗, ∗, ∗, w) ∈ msgs}

)
16) if value =⊥
17) maxts← max

(
{ts | (∗, ts, ∗, ∗, ∗, ∗) ∈ msgs}

)
18) maxcid← max

(
{cid | (∗, ts, cid, ∗, ∗, ∗) ∈ msgs

and ts = maxts}
)

19) value← {val | (val, ts, cid, ∗, ∗, ∗) ∈ msgs
and ts = maxts and cid = maxcid}

20) else
21) maxts← max

(
{ts | (∗, ts, ∗, ∗, ∗, ∗) ∈ msgs}

)
+ 1

22) maxcid← ci, maxval← val

ABD Phase 2
23) send 〈write, value,maxts,maxcid, opCnt, cview〉 to all

servers
24) msgs← ∅
25) repeat
26) upon receipt of message 〈writeack, opCnt, v, w〉
27) if cview = v
28) msgs← msgs ∪ {(opCnt, v, w)}
29) else
30) if cview < v
31) cview ← v

32) read_write(value) . restart the operation
33) until n/2 ≤ sum({w | (∗, ∗, w) ∈ msgs})
34) return value

As we explained in Section I, reconfiguration protocols
present two special functions: join and leave. Servers can
join/leave the system by calling these functions. Reconfigu-
ration protocols require to be adapted to be used as weight
requirement protocols. To do so, we change join and leave
functions of RAMBO and SmartMerge to increase and de-
crease functions, respectively. Each server can request to
increase/decrease its weight using increase/decrease functions.
Particularly, each server can call increase and decrease func-
tions every δ unit of time (0 < δ is a constant) as follows to
increase/decrease its weight. Assume that the latency score of
server s are lst and lst′ respectively at time t and t′ = t+ δ.
Also, assume that the total latency scores of servers computed
by s are LSt and LSt′ respectively at time t and t′. Server
s calls function increase (resp. decrease) to increase (resp.
decrease) its weight at time t′ if lst/LSt + τ < lst′/LSt′

(resp. lst′/LSt′ + τ < lst/LSt), where τ is a threshold for

Algorithm 4 ABD - server si
variables
1) ts← 0, cid← 0, val←⊥

functions
2) get_ts() ≡ ts
3) get_ts_cid_val() ≡ (ts, cid, val)
4) set_ts_cid_val(t, c, v) ≡ ts← t; cid← c; val← v

upon receipt of message 〈read, cnt, v〉 from client c
5) cview ← get_cview() from Algorithm 2, weight←⊥
6) if cview = v
7) weight← get_weight(cview) from Algorithm 1
8) send 〈readack, val, ts, cid, cnt, cview,weight〉 to client c

upon receipt of message 〈write, val′, ts′, cid′, cnt, v〉 from client c
9) cview ← get_cview() from Algorithm 2, weight←⊥

10) if cview = v
11) if ts′ > ts or (ts′ = ts and cid′ > cid)
12) ts← ts′, cid← cid′, val← val′

13) weight← get_weight(cview) from Algorithm 1
14) send 〈writeack, cnt, cview,weight〉 to client c

changing weights.

We used one 1.8 GHz 64-bit Intel Core i7-8550U, 32GB of
RAM machine. KOLLAPS executes each server and client in
a separate Docker container [31], and the containers commu-
nicate through the Docker Swarm [32]. We set the numbers of
servers and clients to five and ten, respectively. Moreover, at
most, one server can fail (f = 1). Each client sends a new r/w
request as soon as receiving the response of the previously sent
r/w request. Since there is no difference between r/w protocols
regarding the number of communication rounds in our r/w
protocols, we set the r/w ratio to 0.5.

The duration of each run is 200 seconds. In each run,
latencies of links are changed every ∆ = 10 seconds while the
processes are unaware of the value of ∆; we set ε = 0.1. We
executed 100 runs and computed the average of the results
that is depicted in Figure 4. The average quorum latencies
of the ABD, RAMBO, SmartMerge and our protocol are
139, 118, 128, and 101 milliseconds, respectively. The ABD
protocol requires the responses of three processes to decide
whether a quorum is constituted while other protocols might
constitute their quorums by two processes. Therefore, the
quorum latencies of other protocols are less than the ABD
on average. In the RAMBO protocol, some views might be
active at a time, while in our protocol, there is only one
installed view at any time; hence, our protocol outperforms
the RAMBO protocol on average. In the SmartMerge protocol,
servers might pass intermediate views to install a new view;
besides, for every r/w operation, it is required to communicate
with a quorum of processes to be sure that the r/w operation is
executed with the most up-to-date weights. However, servers
with the view equal to lastview directly change their views
to the new view in our protocol. Also, each server s knows
its weight, i.e., s does not need to communicate with others
to determine its most up-to-date weight. Hence, the quorum
latency of our protocol is less than SmartMerge on average.
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Fig. 4: Quorum latency evolution for our protocol, ABD, RAMBO, and SmartMerge.

VI Conclusion and Future Work
In this paper, we present a novel consensus-free and crash

fault-tolerant weight reassignment protocol that can be used
to improve the performance of atomic read/write storage
systems. The distinguishing feature of our protocol compared
to previous solutions is that for executing each r/w operation,
it is not required to communicate with a quorum of processes
for finding the most up-to-date processes’ weights, providing
better efficiency. The evaluation results show that our protocol
outperforms other solutions. We assume that the set of servers
does not change over time; however, the protocol can be
extended to consider that servers can leave and new servers
can join the system as future work. Besides, every client
sends each of its requests to all servers. Working on using
strategies for selecting a subset of servers to send requests for
improving the network congestion can be another direction for
future improvement. Extending the failure model to Byzantine
failures could be another direction for future work as well.
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