Canonical Foliations of Statistical Manifolds with Hyperbolic Compact Leaves - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2021

Canonical Foliations of Statistical Manifolds with Hyperbolic Compact Leaves

(1) , (2) , (1)
1
2

Résumé

A. The sheaf of solutions (J ,∇) of the Hessian equation on a gauge structure (M, ∇) is a key ingredient for understanding important properties from the cohomological point of view. In this work, a canonical representation of the group associated by Lie third's theorem to the Lie algebra formed by the sections of (J, ∇) is introduced. On the foliation it defines, a characterization of compact hyperbolic leaves is then obtained. We conclude that these leaves are equipped with a statistical model structure.
Fichier principal
Vignette du fichier
gsi2021 (1).pdf (308.84 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03609559 , version 1 (15-03-2022)

Identifiants

Citer

Emmanuel Gnandi1, Michel Boyom, Stéphane Puechmorel. Canonical Foliations of Statistical Manifolds with Hyperbolic Compact Leaves. 5th International Conference on Geometric Science of Information (GSI), Jul 2021, Paris, France. pp.371-379, ⟨10.1007/978-3-030-80209-7_41⟩. ⟨hal-03609559⟩
112 Consultations
93 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More