Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Multi-label Classification of Aircraft Heading Changes using Neural Network to Resolve Conflicts

Abstract : An aircraft conflict occurs when two or more aircraft cross at a certain distance at the same time. Aircraft heading changes are the common resolution at the en-route level (high altitude). One or more alternative heading changes are possible to resolve a single conflict. We consider this problem as a multi-label classification problem. We developed a multi-label classification model which provides multiple heading advisories for a given conflict. This model we named CRMLnet is based on the use of a multi-layer neural network that classifies all possible heading resolution in a multi-label classification manner. When compared to other machine learning models that use multiple single-label classifiers such as SVM, K-nearest, and LR, our CRMLnet achieves the best results with an accuracy of 98.72% and ROC of 0.999. The simulated data set which consists of conflict trajectories and heading resolutions we have developed and used in our experiments is delivered to the research community o n demand. It is freely accessible online at:
Type de document :
Communication dans un congrès
Liste complète des métadonnées
Contributeur : Md Siddiqur Rahman Connectez-vous pour contacter le contributeur
Soumis le : mercredi 23 mars 2022 - 15:42:46
Dernière modification le : vendredi 25 mars 2022 - 03:56:22


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Lien texte intégral



Md Siddiqur Rahman, Laurent Lapasset, Josiane Mothe. Multi-label Classification of Aircraft Heading Changes using Neural Network to Resolve Conflicts. 14th International Conference on Agents and Artificial Intelligence (ICAART 2022), Feb 2022, Online, United States. pp.403-411, ⟨10.5220/0010829500003116⟩. ⟨hal-03617636⟩



Consultations de la notice