Accéder directement au contenu Accéder directement à la navigation
Article dans une revue

A novel image representation of GNSS correlation for deep learning multipath detection

Abstract : This paper proposes a novel framework for multipath prediction in Global Navigation Satellite System (GNSS) signals. The method extends from dataset generation to deep learning inference through Convolutional Neural Network (CNN). The process starts at the output of the correlation stage of the GNSS receiver. Correlations of the received signal with a local replica over a (Doppler shift, propagation delay)-grid are mapped into grey scale 2D images. They depict the received information possibly contaminated by multipath propagation. The images feed a CNN for automatic feature construction and multipath pattern detection. The issue of unavailability of a large amount of supervised data required for CNN training has been overcome by the development of a synthetic data generator. It implements a well-established and documented theoretical model. A comparison of synthetic data with real samples is proposed. The complete framework is tested for various signal characteristics and algorithm parameters. The prediction accuracy does not fall below 93% for C/N0 ratio as low as 36 dBHz, corresponding to poor receiving conditions. In addition, the model turns out to be robust to the reduction of image resolution. Its performance is also measured and compared with an alternative Support Vector Machines (SVM) technique. The results show the undeniable superiority of the proposed CNN algorithm over the SVM benchmark.
Liste complète des métadonnées

https://hal-enac.archives-ouvertes.fr/hal-03641028
Contributeur : Nicolas COUELLAN Connectez-vous pour contacter le contributeur
Soumis le : jeudi 14 avril 2022 - 09:33:59
Dernière modification le : lundi 4 juillet 2022 - 10:26:31
Archivage à long terme le : : vendredi 15 juillet 2022 - 18:11:37

Fichier

CNN_GNSS_multipath.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Antoine Blais, Nicolas Couellan, Evgenii Munin. A novel image representation of GNSS correlation for deep learning multipath detection. Array, Elsevier, In press, ⟨10.1016/j.array.2022.100167⟩. ⟨hal-03641028⟩

Partager

Métriques

Consultations de la notice

242

Téléchargements de fichiers

56