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Abstract

Moving object analysis is a constantly growing eld with numerous concrete applications in terms of tra ¢ understanding,
prediction and simulation. While many algorithms and analytic processes exist, there are still areas of investigation with
novel trajectory analysis methods. As such, the geometric information analyses data with respect to its statistical distribu-
tion along extracted dimensions. This opens new ways of gaining a better understanding of large and complex trajectory
data sets while providing exible data manipulations. In this paper, we report our investigations with the development of
an interactive methodology based on the geometric information analytic process where users can analyze trajectories sets
cluster and deform them maintaining the actual statistical properties of the investigated trajectories. As a contribution, this
paper shows how Functional Data Analysis can provide novel support for trajectory analyses taking into account the statisti-
cal properties of the investigated clusters. We also provide recommendations for e cient usage of the process, considering
trajectory registration, initial clustering, trajectory deformation and generation. These recommendations are illustrated with
actual examples validated by a domain expert of air tra ¢ ow analysis.

KeywordsGeographic/geospatial visualization - Data aggregation - Data cleaning - Data clustering - Data transformation
and representation - Data editing - Manipulation and deformation - Multidimensional data - Geometry-based techniques

1 Introduction alternatives do exist where humans play a central role with
the usage of interactive visualization systenjs [2

Our society has entered a data-driven era, in which not only In this regard, this paper investigates a novel analytic
enormous amounts of data are being generated every dayethod for trajectory processing using information geom-
but also growing expectations are placed on their analysetry [3]. While general trajectory analysis relies on distance
[1]. Trajectory data (i.e. ows of cars, airplanes or peopleland time algorithms, information geometry uses di eren-
are collected every day and analyzing these massive atidl geometry and probability theory][Buch analytic tools
complex data sets is essential to making new discoverieapture the intrinsic statistical properties of the investigated
and creating bene ts for people. Processing such data igjectories. Previous work [Showed its potential to sup-
a challenging task due to their intrinsic, time-dependeryort visual simpli cation and visual ow modeling. Geom-
nature. While machine learning heralds a solution to address$ry information deserves further investigation which goes
the issues of big data and e cient knowledge extractionbeyond its usage for visualization purposes.

Considering trajectory input data as a set oturves,
the standard multivariate statistical representation of a set

" Gabriel Jarry of curves would be a set of-dimensional samples {8].
gabriel.jarry@recherche.enac.fr . .
_ However, this representation may not capture all relevant

Almoctar Hassoumi curve characteristics—e.g. its shape or smoothness. Func-
almoctar.hassoumi@enac.fr . . .

tional data analysis [®nables a better representation of
Daniel Delahaye multivariate data functions like curves. A curve is then
daniel.delahaye@enac.fr .. . . . .

modeled as a point in an in nite-dimensional space, usually
Christophe Hurter the space of square-integrable functiond. [Seometry

christophe.hurter@enac.fr information can then be used to obtain a nite representation
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Analysis (FPCA). This tool captures the data variabilitythorough usage of geometry information-based algorithms
around the mean curve while estimating the Karhunen-loéver trail set analysis and deformation. This section presents
expansion [ In other words, FPCA yields a nite basis the main research challenges encountered in the elds of
describing the main variability modes contained in the datdrajectory analysis, trajectory deformation and interactive

Learning the distribution of the data on this basis enablesxploration of trajectories.

two powerful applications: the generation of new samples

with the same behavior, and the creation of samples withza1l Functional modeling

user-deformed mean consistent with the collected data.

Traditional methods for trajectory generation are gen¥When manipulating objects that have a functional nature or
erally based on a series of space-time points generated dme raised from a functional model, it is advised to preserve
aircraft model data such as Based of Aircraft Data (BADA}his model using appropriate tools. Functional Data Analy
[10]. Such techniques have shown their e ciency for trajec-sis (FDA), [] is a tool that aims to precisely preserve the
tory simulation [11], characterization, and analysis [12], andunctional nature of data by expanding it into an appropriate
have led to the development of fast-time air tra ¢ modeling, nite functional basis. The input object is transformed into a
and simulation software. However, they are not optimal focoe cient vector, which can then be used in a multivariate
group of trajectory analysis since they usually apply a pdramework. This enables the use of traditional multivariate
trajectory analysis. Such limitation relies on the shortcomingtatistics but with the insurance of keeping the functional
of these tools to capture the intrinsic statistical propertielsehavior of the underlying objects. The choice of the basis
of trajectory sets. In the context of noise contour simulatiois important since an appropriate basis choice can better cap
for new approach procedures, it is important to ensure thaire some data features such as smoothness. Nevertheless,
the trajectory ow statistical distribution is capture by thethe main applications of FDA are real-valued functions such
model to produce reliable results. This motivates the use af spectrometric data [13] or weather data [14]. Neverthe-
Functional Data Analysis with FPCA, which addresses sudless, there are few applications on vector-valued functions,
limitation and enables generation, while keeping a consistentich as the 2D or 3D curves considered in [15], andl{2]6,
ow distribution. or trail set brushing [18].

This paper applies geometry information for analytie pur
poses and proposes an analytic pipeline to support traje2-2 Trajectory clustering, simpli cation
tory processing. This pipeline handles trajectory clustering, and generation
data cleaning, ow simpli cation, ow generation and ow
transformation. This methodology was built with the helpTrajectory analysis often relies on clustering algorithms.
of air tra c experts to ensure the accuracy of the processe@lustering can be performed on the geographical space [19]
information. with density maps [20], with pattern similarities [21] or with

This paper’s contributions rely on the analytic pipelinetime clustering [22]. It is also possible to de ne distances
and its guidelines to leverage trajectory analysis with geonsetween trajectories to enable clusteri@g]] or to use
etry information tools. The article is structured as followsdimensional reduction processes [15]. Using the Functional
Sect.1 presents related works on existing trajectory proces$rincipal Component Analysis for trajectory clustering has
ing algorithms. Sectiof lays the mathematical foundations barely been investigated yet, which makes this study a pre-
for trajectory analysis limited to ow understanding andcursor in the area.
management which is one of the core task for an air trac New methods such as Generative Adversarial Networks
controller to insure smooth and safe tra c. The following allow to generate trajectories. A recent publication [24] pro-
section gives the basis of the information geometry. Nexposes the use of GANs for the generation of aircraft trajec-
we detail the pipeline followed by its use cases. Next, weories and the detection of atypical approaches.
discuss this paper with an extract recommendation for good
usage of the tools. Finally, we conclude the paper with po2.3 Trail-set simpli cation and manipulation
sible work extension.

Introduced by Holten 5], visual simpli cation helps to
remove clutter in dense graphs or trail-set visualization such
2 Related work as road tra c or air tra ¢ visualization. Thanks to this inter
active visual aggregation, several goals can be achieved sup-
There is abundant literature concerning the analysis of moporting select,navigate, Iter and arrange tasks [2627].
ing object trajectories. Even if it is a well-explored topic, it[27] provides a review of existing edge bundling techniques
remains a popular area of research where geometry informand details the existing algorithms and their usages. A more
tion has barely been used [5]. This paper lIs this gap with aecent work shows how to use FPCA tools to support visual
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simpli cation [5] but this work only operates on the visual shows how to generate a new distribution using these prin-
perspective and no analytic processing is provided. cipal coe cients. Finally, Sect4 illustrates how to modify
Other trajectory manipulation can be carried out, someurves thanks to controlled deformations.

based on the user’s interaction [28], with variant layout

deformation such as sheye and bring & go techniques [29,

30] and edge plucking [31]. The sheye deformation is3.1 Curve functional modeling

illustrated in Fig.1l on air tra c trajectories over France.

Such techniques are re ned in more recent papers3[#2, Functional Data Analysis considers curves as objects in

Transmogri cation also interactively transforms graphs ofan in nite dimensional space. This enables certain curve

trail-sets with users’ input [34], but again such transformabehaviours such as their shape or smoothness to be taken

tion only operated on the visualization side and no furthento account. To retrieve the functional model from dis-

data processing can be performed. The work presented in tteete data, curves must be reconstructed in a dedicated

following sections is inspired by these techniques to perforrfunctional space. It is mandatory that curves have two con-

trail-set deformation while allowing its analytic processingtinuous rst derivatives and thus belong to thespace of
square-integrable functions. Before applying functional

2.4 Trajectory exploration tools decomposition, curves must belong to this space so
called Sobolev [46]. is composed of functionsthat

Exploring, analyzing and visualizing temporal data suchmeets the following criteria:

as trajectories has a long history. Time series analysis [35]

helps the extraction of relevant information. Frameworks

[36] are available to gain a better understanding of such com- 1)

plex time-varying data sets thanks to aggregation techniques

[37]. A recent visualization framework has been provided to

structure e cient temporal data representations [38]. To obtain a functional representation of the discrete curves,

Many interactive tools and systems for trail-set explorathe choice of a cubic spline kernelikmade since it has

tion and manipulation exist. Selection boxes help to Itersmoothing properties and respects the condition of being

objects of interest [39] [40], particle systems help to undeiin the Sobolev Space. A set of curves is then rep-

stand ow directions [41]. More recently, image based techresented by a matrix where each row represents in

niques [42] have been applied for trajectory analysis [43f€rms of spline coe cients. The reproducing kernel theory

Boolean operation can be performed to combine selectio@sumes a decomposition of a functioas a series of a

of trajectories [44] on a 2D screen or in virtual reality [45].reproducing kernel (in our case a third degree polynomial)

Overall, no previous system used the FPCA tools in a uni eégken at a de ned number of timestampgalled centers.

framework for trajectory analysis and this paper provides théhe number of spline coe cients of corresponds to

rst of the kind. the number of center plus two:

: : (2)
3 Mathematical foundations
This section provides the mathematical foundations to
understand the Functional Data Analysis process. Sec- ] o )
tion 2.1 underlines the representation of discrete trajectc3-2 Functional principal component analysis
ries in a function space. Sectidr? explains how principal modeling
curves help to represent a set of trajectories. Se&tibn

Let be a set of Murves. The Func-

tional Principal Component Analysis (FPCA) process con-
sists in modeling C with its mean curvand the variance
around it. A classic hypothesis is tHatcomes from an
underlying hidden stochastic process , where

is the probability space of all possible outcomes and [0, 1]
the time interval. The empirical covariance estimat@na-
bles the capturing of the variability of @ound its mean
using the Karhunen-Loeve expansion [47] with  and

Fig. 1 Fisheye deformation applied to air trac trajectories over
France
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neighborhood. This coe cient enables the user to modify
(3) the similarity between the original and the generated trajec-
tory. The following Algorithm 1 illustrates an implementa-

where are real-valued random variables called principafi©n ©f the neighborhood algorithm.

component scores. are the (vector-valued) eigenfunctions
of the covariance operator with eigenvalued-or the dis-
crete implementation of such functional decomposition see
[5]. With this model and knowing the mean curvend the ~ Data: b;; € R?, 1 < j <N, and 1 <i < d, matrix of the
principal component functions, a group of curves can be N principal scores, with d the dimension of the
described and reconstructed (Inverse FPCA) with the matri;  Principal component scores
of the principal component scoreof each curve. Usually, a V@ is the variance operator
nite vector ( xed dimension d) of scores is selected such Random(a,b) gives a random int between a and b

. . . . Result: Generate a new principal component score
that the explained variance is more than a de ned percentile

. begin
To sum up, each trajectory can be represented through tt for i=1,...d do

FPCA process by the Mean plus the sum of the Principa | 6?2 « Var{bii,....by:}
Component Functions weighted by the Principal Compo- end ' o
nent Score. The Inverse FPCA (IFPCA) process consists i 62« {o2,..,02}:

reconstructing the trajectory from the Principal Component k < Random(1,N);
Scores knowing the Mean and the Principal Componen return s € &(by, o - 62)

Functions. end

Algorithm 1: Neighborhood generation, o coefficient be-
tween 0 and 1 defines the neighbor threshold. & (by, & - 62)
is the elipsoid of center by and semi-axis 6>

4 Tools

_ o . . 4.1.2 Multivariate Gaussian mixture model generation
This section is divided into two parts. Sectiha explains

the curve generation process, and Se2tpresents the clus- Ap alternative to the neighborhood generation model con-

tering task. sists in applying a multivariate Gaussian Mixture model,
i.e. an Expectation-Maximization (EM) algorithm [48], on
4.1 Curve generation the principal component scores that concentrate more than

a user-de ned percentage of the explained variance. This
In [5], Hurter et al. generated curves with a random sele@rocess does not assume the independence of the principal
tion of principal coe cient scores with a centered inde- component scores and enables a richer representation with
pendent simple Gaussian distribution hypothesis. Usuallyg Gaussian Mixture instead of a simple Gaussian Distri-
coe cients are not simply Gaussian. Consequently, curvedution. With this generation, it is usually more di cult or
generated with this model do not present realistic behaviogven impossible to properly estimate the distribution for a

Two alternatives are proposed in the following. large number of components. This is the well known prob-
lem referred to as the curse of dimensionality [49]. In high
4.1.1 Neighborhood generation dimensional space, the volume of space increases rapidly

and samples are usually isolated. The choice was made in

To ensure the generated curves are su ciently realistic, #1s study to estimate only the distribution of the rst com-
neighborhood generation was developed in this study. THOnents that explain most of the variance with the depend-
curve regeneration process needs to take into account @Ace hypothesis. The last components, which mostly cor
important number of principal coe cients (typically more respond to the noise, are then assumed to be independent.
than 60% of the total principal components). The process

is as follows: First, each principal coe cient of the dimen- 4.2 Clustering

sion variance is computed using a Gaussian centered model.

Then, a curve is randomly selected and its principal comp@-.2.1 Clustering for regeneration

nent scores are kept. Finally, a new score is randomly-gener

ated in the neighborhood of the selected sample. The ran@éustering is a very important initial step before applying
of the neighborhood is de ned with the variance among eacthe FPCA process. To be e cient, FPCA must operate on
dimension. In addition, the user is able to tunecae - clusters with representative mean curves. A two step clus-
cient between 0 and 1 that is multiplied to the range of thiering process was derived for this study. A cutting down
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clustering, which aims at reducing large data-sets, is appliéshportant step for clustering re nement. Since curves are
in a rst step. For example, one can use a k-means clusteriadready clustered, it is possible to de ne the probability that
(or other simple literature algorithms) on arrival or departur@a sample is in a cluster. This probability is usually de ned
trajectory locations. For the study of aircraft landing trajecusing the distance between a sample and a representative
tories, the initial clustering is here done on the destinatiosample of the cluster. Therefore, outliers can be considered
runways. The second step is to apply a re nement clusteas samples whose probability of being in a cluster is lower
ing based on the FPCA decomposition score. Displayinthan a threshold value. The user is able to select this like-
rst coe cient dimension, the user is able to apply anotherlihood threshold and therefore select outliers they wish to
clustering algorithm to group together similar trajectoriesremove. It is also possible to de ne an interaction te per
The choice of the Expectation-Maximization algorithm [48]form outlier cleaning by visualizing the principal coe cient

is made here but other algorithms such as k-mean [50], scores and selecting the samples to remove. This interaction
Hierarchial Density-Based Spatial Clustering of Applica-is similar to a brushing interaction but is carried out in the
tions with Noise (HDBSCAN) [51] are also applicable. Theprincipal component score space.

choice of the algorithm and/or the number of clusters should In Fig. 2, the process of outlier detection is illustrated.
be guided by the visualization of the FPCA score and bigach ellipse represents a likelihood value level, which is
expert knowledge of the investigated data-set. In additioruser de ned.

the user is able to select the number of dimensions of the

principal component score to use for the clustering and visé.4 Visual simpli cation (Edge bundling)

alize the clustering result on the trajectory to decide which

clustering method produces the most representative clustérse edge bundling is performed thanks to the Inverse FPCA

(i.e. mean curve dissimilarity). process. This reconstruction method uses all principal com-
ponent functions. However, one can choose to reconstruct
4.2.2 Clustering for Classi cation the trajectories with only a certain number of principal com

ponents. In [§ Hurter et al. suggested removing the compo-
The distribution of the principal component score can beent by a percentage of the explained variance.
used to cluster data. Indeed, the nite dimension represen- Usually, 99% of the variance is explained by a small num-
tation enables the computation of distance. Besides, theer of components, less than 10% of the total number of
euclidean norm of the principal component score is equ@rincipal components. A bundling coe cient between 0 and
to the L2-norm in the Sobolev Spacq.[th a situation 1 was de ned as representing the percentage of explained
where the behavior of the group of trajectories to classifyariance kept: A value of 0 means that only the mean curve
is known, this knowledge can be used to de ne a classi cais kept, while a value of 1 means that the original trajec-
tion process using unsupervised learning techniques. Firsgry is fully reconstructed. For computational purposes, the
trajectories are decomposed using the FPCA process. Thérgnsition between 0.99 and 1 is achieved by adding 90% of
the HDBSCAN [51] clustering algorithm is applied to all the principal components. In terms of total data set variance
the trajectories principal component scores. Since the FPCA
process clusters together similar data, it means that similalg
trajectories will be grouped together. HDBSCAN is really
highly e cient in determining density-based clusters with
irregular shapes, i.e. clusters that are generated from t Gaussian
same distribution with no assumptions on the type of dis Mbduire
tribution. In addition, the HDBSCAN algorithm gives the
probability of being in a cluster. Knowing the behavior of
the group to be detected, it is possible to identify to whicl
cluster it corresponds. Finally, the user de nes a probabilit
value above which the trajectory is attributed to a cluste e
This enables the user to choose the characteristics of th
classi cation algorithm in terms of accuracy or speci city.

C2

Outliers - @

4.3 Data cleaning PC 1

To improve generation e ciency, the user must remove out Fig. 2 lllustration of the data cleaning or outlier removal process. The
’ blye colored dots represent the di erent likelihood levels. The user is

liers that are not considered as representative membersa%e to select a likelihood level outside of which a sample is consid-

a class of trajectory. This data cleaning process is also ared as an outlier
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this is negligible. However, individually this transition may Altitude
induce very large modi cations to the behavior of certain
trajectories. \
To avoid this type of visual artifacts, the current study N
favors a piece-wise linear mapping for the bundling coe - 5000ft | .. R
cient. For example, from 0 to 0.90, add the number of con (lz(;z:)
ponents equivalent to 0 to 99% of the variance. For the la (1200m)| TR

0.9 to 1 add the remaining components linearly. Figure

shows the bundling result with a set of landing trajectory an Distance
increasing explained variance (0%, 25%, 50%, 75%, 1009 1NM 8NM to runway

Altitude (20km) (15km)
5 Curve shape modi cation _

Visual

While simple trajectory deformations can be performed witt sooort | . f oS ) ,/',\r,t?faCts
Cartesian dimensions, it become more complex with-add (1500
tional data dimensions such as altitude. Furthermore,-defc (;‘3332,— --------------- B 7 AR
mation becomes cumbersome when it has to be applied
many trajectories. FPCA can help solely with the deforma Distance
tion of the cluster mean curve and its principal componen: 11NM 8NM to runway

to modify every trajectory of the investigated cluster. Hurte. (20km)(15km)
et al. [ only modi ed the mean curve to perform trajec-
tory modi cations, which leads to many visual artifacts.Fig- 4 This gure illustrates examples of good and poor usage of

. - . . curve modi cations for aircraft approach trajectory altitude pro-
Indeed, the mean curve modi cation is not su cient, the le. At the top, both the mean and the principal components were

principal components also have to be modi ed to correctlynodi ed. At the bottom, only the mean was modi ed. The behavior
model the temporal behavior which was embedded in thabserved while modifying only the mean curve presents artifacts.
undistorted original FPCA model. Modifying the trajectoryLeveI-o ight was expected, but the _trajectories present descent
behavior implies peing sure that t_he.principal componentg;:fﬁésT:gfgxggngﬂfozgl;Ot nominal and underline that the pro-
and therefore their underlying variation on the mean curve
behaviour, are applied at the right timestamp. Modifying the
mean curve without insuring that the role of the principamean curve and result in an unrealistic trajectory with arti-
components was not modi ed, resulted in most cases, witfacts around the level-o ight (red circle in Figl). The
aberrant curve behaviors. top Fig.4

In Fig. 4 good and poor usage of curve modi cations The mean curve modi cation and its principal compo-
are illustrated. This shows aircraft vertical pro les (alti- nent modi cations are not an easy task. First, a curve reg-
tude function of the distance) modi cations, where theistration is needed to align curve landmarks. In our case,
landing procedure was increased in altitude (1000ft highdrajectories are aligned by distance (along the curve) with
for noise sustainability issues). This use case will be furespect to the runway threshold considering that the time
ther detailed in Sec6.2.1. The bottom Figd shows the stamp O is the last point over the runway threshold. Then,
result of the solely mean curve modi cation. In this casethe key idea is to apply the same temporal modi cations
the principal components are no longer aligned with théo both the mean and the principal components functions.

Explained Explained Explained Explained Explained
Variance: Variance: Variance: Variance: Variance:
100% 75% 50% 25% 0%

Fig. 3 This gure illustrates the Edge Bundling (i.e. trail visual resented. On the right side, the full bundled curves, i.e. the mean
simpli cation) process for landing trajectories at Charles de Gaulleeurves, are shown. The other curves represent respectively 75%, 50%,
Airport. On the left side, the bundling coe cient is chosen so thatand 25% of the explained variance

it explains 100% of the variance, i.e. the original curves are rep-
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This enables a consistent modi cation which produce<urve temporal cut or extension: The cutting or extending

reliable results without artefacts. operator of a curve at with width , for
Curves translation: The translation operator of a curve any is de ned as :
is de ned asy the translation vector for any as:
4)
(7

This is the sole operator that can be applied only to the me
curve since it does not a ect landmark time position.
Curves 2D rotation: The 2D rotation of a curve

?n addition, this operator modi es the de nition interval of
the curve. A good use consists in applying the TCD (Exn.
operator between 0 and  with compression coe cient

at time with angle for any as is
de ned as: Smoothness: The three last operators (EgnEqn.6,
Eqgn. 5, only insure the continuity but do not ensure the
smoothness of the obtained curve. Nevertheless, it may be
restored for an operational or visual purpose using an addi-
tional Itering algorithm (Laplacian Itering or other).
(5)

Temporal compression and dilatation: Temporal compres- o
sion/dilatation operator of a curvebetween and with 6 Pipeline

the compression coe cient with —, the
temporal compression/dilatation is de ned for any The Fig.5 shows the pipeline with a trajectory data-set as
as: input data. The rst step performs an initial clustering to

reduce the data-set size into clusters with similar trajectories.
This initial clustering is data-set dependent. For instance,
with aircraft trajectories, it can be performed on departure
or arrival airport. The FPCA process can then be applied
to each cluster to compute the mean curve, the principal
(6) component functions and the principal component scores.

Fig. 5 lllustration of our pipeline. On the left, the input curve data-for the generation process. Generation consists in estimating the prin-
set passes through an initial clustering step. After this, trajectory regipal component score distribution and in generating new samples
istration based on landmarks is applied. Then, the FPCA processfalowing the estimated distribution. During the modi cation opera-
computed for the rst time for each cluster. This FPCA process givetions, the mean and the principal component functions are processed.
two pieces/elements of information: the principal component scorel$ consists in applying modi cation operators (rotation, translation,
(top gure) and the mean curve with the principal component funcdilatation) to obtain the desired distortion. Finally, the Inverse FPCA
tions (bottom gure). The principal component scores are used in twprocess enables the trajectory to be reconstructed with the new distri-
situations: First for clustering re nement and data cleaning, secontution (i.e. increase or decrease in trajectory number) and behavior
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Then, a clustering re nement step can be compute&#PCA usage to insure an optimal mean curve and principal

based on the principal component scores as previoustpmponent extraction.

explained. User input is needed at this clustering step: with

the suggested EM algorithm, the user has to de ne th@.1.2 Landing sequence classi cation

number of clusters and the number of principal compo-

nents to use. In this section we will apply the unsupervised classi ca-

The following step shows di erent possible trajectorytion process de ned in Sec3.2.2 to the identi cation of

processing. The Inverse FPCA produces size varying tréanding procedure at Bordeaux Merignac airport (one of

jectory with respect to their shape and statistical propethe major airports in France). When landing on runway

ties. Two di erent types of trajectory generation are avail-05, aircraft follow four kinds of trajectory (RNAV,Visual-

able3.1 RNAV, VOR+DME arc, other radar vectoring). The RNAV
approaches, are GNSS paths. They are very characteristic
since they follow a path from de ned way-points (geographi-
cal points on a map). It also means that this type of approach

7 Use cases will be very similar in the FPCA space. We recorded 2597
suitable landing sequences (one record every 4 seconds,

This section is divided into two parts. Each part illustrate995963 points in total) during a three month period in 2018

a speci ¢ feature of the pipeline (Fi®). The rst part (summer time). We xed the probability threshold of each

illustrates the clustering process, the second one the treluster in order to minimize the false positive samples.

jectory modi cation operator through concrete examplesindeed, we know the behaviour of these approach trajec-
tories, so we xed the threshold such that all the detected
trajectories correspond to this behavior.

7.1 Clustering and classi cation Figure 7 shows the result of the clustering algorithm
where classes of landing sequence are clearly separated
7.1.1 Clustering re nement within four clusters. Figuré bottom shows the distribution

of the rst four principal components with the identi ed
In this section, the clustering method based on the FPC&uster. Figure8 illustrates the in uence of each princi-
is illustrated. To show the exibility of our method, it is pal components on the mean curve. As an explanation, we
applied to a di erent data-set. We use the trace of 15035@bserve that in uence of PC1 in the 2D trajectories path is
brain bers extracted from high fractional anisotropy areasnainly the position of the base leg. Therefore, it explains
ina 128 128 51 DTI volume (dataset from Everts the spatial disparity between blue vs green and purple PC1
et al. [52]). The initial clustering with a 5-means on thevalues in Fig7.
departure arrival points was applied. Then a re nement
clustering of the FPCA decomposition of each cluste.2 Curve modi cation and generation
using HDBSCAN algorithm was applied. On Figywe
represented on the left image the initial clustering, thefd.2.1 Interception altitude modi cation
we selected one cluster to which a second FCPA process
we applied. Finally, on the right, 4 clusters were extractedAfter The Grenelle de I'environnement 2018 annual meet-
Clustering re nement is an important task before furtheing to discuss sustainability issues, landing procedures at
Charles de Gaulle airports were raised by 1000ft (around

Fig. 6 This gure illustrates the clustering process applied to a braireach cluster. Then, the HDBSCAN algorithm is applied to the princi-
bers data-set. On the left side are illustrated the bers after an initiabal component score in order to extract subclusters. On the right side
clustering using 5-means clustering algorithm on the origin-departurare illustrated four of the extracted clusters and the full two step clus-
pair of points. From this clustering, the FPCA process is applied ttering result
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Fig. 8 This gure illustrates the mean curve and the four rst prin-
cipal components around the mean curve for landing trajectories at
Bordeaux airport. On left side are represented the longitudinal param-
eters, on right side the altitude pro le

Fig. 7 This gure illustrates the clustering task of the landing trajec-
tory at Bordeaux airport. On the top image is illustrated the result dimestamp of the mean curve at 1000ft (300nthe times-

the classi cation of the Bordeaux airport approaches from the ZOl{amp of the mean curve at 2000ft (600m); and the di erence

data records. At the bottom, the rst four principal component score . . .

distributions are represented is <.:ompuf[ed. Finally, the curve extension opera-
tor is applied.

The generated trajectories are then studied through Euro-
300m) to reduce noise emission. In this regard, we worketbntrol IMPACT software that uses Base of Aircraft Data
in collaboration with the Environmental O ce of the French (BADA) models [10] and standard pro les, and Aircraft
Civil Aviation Authority. Noise and Performance (ANP) data base, which includes

In this section, we report the simulation results where waloise Power Distance (NPD) tables to computed noise maps
processed tra ¢ before the rise and modi ed them with thefrom estimated thrust. This is a compliant procedure with
Grenelle 300 meter rise. We then computed the resultingternational Civil Aviation Organization (ICAO) DOC 29
noise emission and compared it with the actual trajectoriegol. 2 [53] regarding noise contour assessment for ANSPs.
after the rise. This comparison provides a good assessmétigure9 illustrates, on top, the noise level for the real tra ¢
of the accuracy of the trajectory generation and modi ca{after the altitude rise), and at the bottom, the noise gener
tion pipeline. ated from the pipeline with the modi ed tra c. The noise

The process is the following. First, curves were regisindicator is the NA62 indicator which is computed over one
tered by distance considering the starting point at the runwalay of tra c. This indicator is mainly used by the environ-
threshold. Second, the FPCA decomposition and a clusterimgental o ce. It corresponds to the number of aircraft emit-
re nement of the trajectories with the EM algorithm [48] ting noise above 62dB during the period. The area for 5 to
were applied. 20 events above this threshold is represented here.

Then, for each cluster, curves were modi ed to follow The result shows that this noise computation is close to
the 300 meter pull-up. Two timestamps are inferredhe  the actual recorded noise with main identical parts even if
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Fig. 9 At the top, the noise NA62 indicator map of the real aircraft
tra c (aircraft noise above 62dB). At the bottom, the same indicator
map for the simulated tra ¢ obtained with the pipeline. The modi -

cation consists in raising by 1000ft (300m) the level-o ight of land-

ing aircraft before landing. This modi cation was applied following

the Grenelle de I'environnement for noise reduction purposes

a few di erences in terms of areas can be observed. Tt

simulation covers 92% of the area because the real noise map

is slightly more extended on the left side. This is due to theig 10 This gure illustrates the departure procedure deformation.

fact that in the real context, approaches tend to have a longet top, the original trajectories at Bordeaux Airport are represented.

level-o |ght before Starting the nal descent. Neverthe|essl At the bottom, the modi ed trajectories at Nantes Ail’pOI’t. In addi-

this shows that the pipeline can produce valuable Simulatéian’ the expected procedure following dierent aeronautical way
) . L . . points is shown in red

trajectories and can be used for realistic ow simulation.

7.2.2 New departure ow investigation Final Approach Fix EOOO1, between EOOO1 and way
pointFBO03, and between FB0O03 and waypoint BOBRI,

Before building a new aircraft departure ow, it is valu- corresponding timestamps,( , ) from mean curve are
able that it is simulated and its noise impact assessed. Tligerred. We rst consider the angle [THRQ001,FB003]
study’s pipeline assists in this matter. To test such a poand compute the angle difference with the corre-
sibility, we considered a novel departure ow at Nantessponding angle on the mean curve after the rst rotation
Atlantic Airport (one of the major airports in France) using[ ]. Then, we apply the rotation )
an existing ow at Bordeaux-Merignac Airport as a refer of angle at timestamp . Finally, we consider the angle
ence model. Such ow duplication is not straightforward[EO001,FB003,BOBRI] and compute the di erences
since the original departure ow (i.e. Bordeaux) has to bavith the corresponding angle on the the mean curve after the
modi ed to follow mandatory way points at the destinationsecond rotation [ ] and apply the rotation
airport (i.e. Nantes). of angle attimestamp .

As aresult, FiglOrepresents at the top the original ow
of trajectories at Bordeaux and at the bottom the generat&®.3 User interactions
and distorted departure ow with the pipeline after its modi-
cation to t Nantes airport landing procedure. To make thisin this version of the software, the interactions have been
transformation several steps are needed. First, we apphiraplemented in a simple way. To modify the intercep-
translation whose vector is the di erence between the-cootion altitude, the user chooses the curve extension mode,
dinates of the two runway thresholds. Second, the angle he enters the reference altitude (1000ft) and the deviation
between the two runway headings is computed and a rot&-1000ft), the software infers the time delta and applies
tion is applied to align the nal approach paths.the curve extension operator. For the modi cation of the
Third, knowing the distances between the runway and the departure ow, the translation and rotation from one airport
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to another are automatically computed from the runway Trajectory registration: This initial step is mandatory to

coordinates. Then, the user chooses the rotation mode to e ciently capture the variance around the mean curve of

modify the trajectories. For each of the successive rotations, the considered clusters,

he enters the coordinates of the four points to rotate: the Initial clustering: An initial clustering is mandatory to

three points that make the original angle, and the nal point have a meaningful mean trajectory,

after rotation. The software infers the angle and applies the Trajectory deformation: trajectory deformation only

rotation to the intermediate point. operates with the mean curve deformation associated
Potential improvements can be made to enhance the pro with the principal component function modi cations,

cess by making it even more interactive. We can imagine<a Trajectory generation: many possible methods exist to

drag-and-drop interaction to directly modify the trajectories increase or decrease the number of trajectories. We pro-

and as an aid to the user, the software could automatically posed three methods taking into account the global, local

give information about the modi cation of the rotation angle  and neighbor variance.

in degrees or the modi cation of the altitude in feet.

9 Conclusion
8 Discussion and FPCA good practice In this paper, we propose a new approach to analyze trajec-

) ) . . tories from a functional decomposition perspective for the
This section discusses the paper outcomes (clustering, tigsderlying data-set. Thus, we developed a functionally based

jectory distortion, trajectory generation) and provides &S””bipeline to support the following trajectory processing: clus-
mary of FPCA good practice. _ tering, trajectory deformation and trajectory generation.
The objective of clustering re nement is to compute Clus—panks to the pipeline, trajectories can be clustered taking
ter with consistent mean curve. As previously explainedy, account trajectory curvature and their variability around
the FPCA process is e cient when groups of curves havgne mean curve. This provides another clustering tool which
similar shapes to correctly capture their variability aro“”‘iinainly considers trajectory shapes as a grouping parameter.
a mean curve. In addition to the clustering re nement, it rq,gh concrete examples, an aircraft path deformation
is also important to remove outliers which may impact the,nq the corresponding noise computation, we show that the
mean curve and potentially induce weak results in the nesajine can produce reliable solutions for trajectory simula-
FPCA processing steps. o . tion. The results seem to be relevant regarding operational
The system, derived from the pipeline, contains a Sg}etrics. Rather than processing every trajectory to deform it
of speci ¢ tools for trajectory modi cations. Modifying 504 make it compliant with new air tra ¢ ow constraints,
the mean curve without keeping the principal Componentge pineline enables the deformation of a single mean curve
aligned will generate artifacts. Users need to visually assegs produce an equivalent result. Furthermore, this pipeline

the modi cation results and ne tune the regenerated curvegs exiple, since the user can also increase or decrease the

Currently, the methodology has prede ned modi cation pre-,,mper of trajectories while keeping a coherent distribution
sets, but in our future work, the user will be given the ability, .5 ,nd the mean curve.

to choose the modi cations and interact on the mean and on \yhjje we show quantitative and accurate results with this

the principal components to directly see the e ect on thgyiseline, many improvements can be considered. Firstly,
regenerated curves. FPCA tools need some fine tuning and the underlying
For the generation process, the user has to select whigh .o meters require some prior knowledge in statistical tool

kind of generation process they wish to apply and de ne how,anipyations. Secondly, the pipeline provides trajectory
many curves to generate. The size of the original data-sgltormations applied to the mean curve and the principal
can be adjusted while keeping a consistent distribution Qfomponent of the considered cluster. We currently provide
extending the data-set in number to simulate tra ¢ growthg;m e transformation like rotation, stretching and bending.

or decrease. The choices in the generation process anddfme additional work is needed to make this transformation
the parameters are guided by the visualizations of the Pripplicable to any kind of trajectory.

cipal component score and the desired proximity in shape
to the original trajectories. Besides, the user can also adapt
the generation process with the visualization of the recon-
structed trajectory and ensure that the generated curves h

the shape expected. . . 1. Thomas, J.J., Cook, K.A.: A visual analytics agenda. IEEE Com-
As a summary, recommendations for e cient usage of = ;¢ Graph. Appl 26(1), 10-13 (2006). https://doi.org/10.1109/

FPCA tools for trajectory analysis are provided here: MCG.2006.5
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