Arrêt de service programmé du vendredi 10 juin 16h jusqu’au lundi 13 juin 9h. Pour en savoir plus
Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

An Efficient Summation Algorithm for the Accuracy, Convergence and Reproducibility of Parallel Numerical Methods

Abstract : Nowadays, parallel computing is ubiquitous in several application fields, both in engineering and science. The computations rely on the floating-point arithmetic specified by the IEEE754 Standard. In this context, an elementary brick of computation, used everywhere, is the sum of a sequence of numbers. This sum is subject to many numerical errors in floating-point arithmetic. To alleviate this issue, we have introduced a new parallel algorithm for summing a sequence of floating-point numbers. This algorithm which scales up easily with the number of processors, adds numbers of the same exponents first. In this article, our main contribution is an extensive analysis of its efficiency with respect to several properties: accuracy, convergence and reproducibility. In order to show the usefulness of our algorithm, we have chosen a set of representative numerical methods which are Simpson, Jacobi, LU factorization and the Iterated power method.
Liste complète des métadonnées

https://hal-enac.archives-ouvertes.fr/hal-03664170
Contributeur : Pierre-Loïc Garoche Connectez-vous pour contacter le contributeur
Soumis le : mardi 10 mai 2022 - 18:26:48
Dernière modification le : jeudi 12 mai 2022 - 03:40:24

Fichiers

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Farah Benmouhoub, Pierre-Loïc Garoche, Matthieu Martel. An Efficient Summation Algorithm for the Accuracy, Convergence and Reproducibility of Parallel Numerical Methods. Numerical Software Verification, Jul 2021, Los Angeles, United States. pp.165-181, ⟨10.1007/978-3-030-95561-8_10⟩. ⟨hal-03664170⟩

Partager

Métriques

Consultations de la notice

0

Téléchargements de fichiers

0