Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Recognition of Outlying Driving Behaviors: A Data-Driven Perspective with Applications to V2X Collective Perception

Abstract : With Collective Perception, intelligent vehicles and road infrastructure can share and receive sensor data from their road peers to enhance mutual awareness. As traffic situations are incredibly dynamic and because of the potentially large number of objects on the road, the V2X channel can become quickly congested if vehicles choose to broadcast frequently. Even though many redundancy mitigation and congestion control techniques have been proposed, another thought is to only broadcast relevant safety-critical information about traffic situations that nearby drivers should be aware of. In this paper, we attempt to recognize outlying driving behaviors that imperil the safety of nearby road participants. The method is data-driven, does not require hard-coding of traffic rules, thus can be quickly adapted to different markets and scenarios while minimizing the incidence of delay until detection.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-enac.archives-ouvertes.fr/hal-03727824
Contributeur : Loetitia MOYA Connectez-vous pour contacter le contributeur
Soumis le : mardi 19 juillet 2022 - 16:44:32
Dernière modification le : vendredi 5 août 2022 - 15:33:43

Identifiants

Collections

Citation

Thinh Hoang Dinh, Vincent Martinez, Daniel Delahaye. Recognition of Outlying Driving Behaviors: A Data-Driven Perspective with Applications to V2X Collective Perception. 2021 IEEE Vehicular Networking Conference (VNC), Nov 2021, Ulm, Germany. pp.52-59, ⟨10.1109/VNC52810.2021.9644627⟩. ⟨hal-03727824⟩

Partager

Métriques

Consultations de la notice

0