Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Communication dans un congrès

Predicting Passenger Flow at Charles De Gaulle Airport using Dense Neural Networks

Abstract : Security checking is a major issue in airport operations. Affecting the correct number of security agents is essential to provide a good quality of service to passengers while providing the best security performances. At Paris Charles de Gaulle airport the affectation of security agents is decided at strategical level, more than a month in advance. The key element to determine the number of agents needed is the passenger flow through the security checkpoints. This flow is correlated to the passenger flow in the different boarding rooms. This paper investigates the interest of small dense neural networks to perform passenger flow prediction at strategical level for Paris Charles de Gaulle airport. A dense neural network has been trained to predict the passenger flow for each boarding room of the airport. The network has been compared to a more complex long short-term memory model in terms of mean absolute error and outperformed a mathematical model based on exponentially modified Gaussian distribution.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

https://hal-enac.archives-ouvertes.fr/hal-03852025
Contributeur : daniel delahaye Connectez-vous pour contacter le contributeur
Soumis le : lundi 14 novembre 2022 - 17:23:48
Dernière modification le : mercredi 23 novembre 2022 - 04:02:53

Fichier

IWAC2022_paper_38.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-03852025, version 1

Collections

Citation

Daniel Delahaye, Alexis Brun, Sameer Alam, Eric Feron. Predicting Passenger Flow at Charles De Gaulle Airport using Dense Neural Networks. International Workshop on ATM/CNS (IWAC) 2022, Oct 2022, Tokyo, Japan. ⟨hal-03852025⟩

Partager

Métriques

Consultations de la notice

0

Téléchargements de fichiers

0