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Security checking is a major issue in airport operations. A�ecting the correct number of security
agents is essential to provide a good quality of service to passengers while providing the best security
performances. At Paris Charles de Gaulle airport the a�ectation of security agents is decided at strategical
level, more than a month in advance. The key element to determine the number of agents needed is the
passenger 
ow through the security checkpoints. This 
ow is correlated to the passenger 
ow in the
di�erent boarding rooms. This paper investigates the interest of small dense neural networks to perform
passenger 
ow prediction at strategical level for Paris Charles de Gaulle airport. A dense neural network
has been trained to predict the passenger 
ow for each boarding room of the airport. The network has
been compared to a more complex long short-term memory model in terms of mean absolute error and
outperformed a mathematical model based on exponentially modi�ed Gaussian distribution.

Key Words : Airport Operations, Passenger Flow Prediction, Dense Neural Network, Strategic
Prediction

1 Introduction

Passenger 
ow is the cornerstone of airport opera-
tions. The airport must constantly balance the quality
of service it provides to its passengers with the associ-
ated costs. The waiting time perceived by passengers
at security or border police stations relates to the qual-
ity of service of an airport. The maximal number of
passengers handled at these key points depends on the
number of positions open and the number of employ-
ees assigned to them. Therefore, managing human re-
sources is essential to provide a quality of service while
reducing operational costs.
At Paris Charles de Gaulle airport, security agents
schedules are planned each month 45 days in advance.
Small adjustments can be made 20 days upstream. Mi-
nor last minute changes are possible up to the week
preceding and the day before. The later the change,
the higher the cost. Therefore, the airport requires the
most reliable prediction of its passenger 
ow 45 days in
advance.
In a context of reducing the environmental impact of
data science, reducing the size and structure complex-
ity of neural networks becomes a major issue.1) The
use of small dense networks instead of more complex
structures can allow to obtain high quality results while
reducing the necessary computational e�ort.

This paper investigates dense neural networks to pre-
dict passenger 
ow at Charles de Gaulle airport. The
study presents the results for di�erent boarding rooms
of the terminal 2 of CDG airport (Figure 1):

ˆ C2F - F1 and F2
ˆ C2E - S3 and S4
ˆ C2D - D53 and D62
ˆ C2A - A40 and A47
ˆ CT2 - A

Fig. 1: Overview of Paris CDG Airport.

Section 2 presents a brief state of the art, Section 3
describes the structure of the neural networks and the
extraction of features. Section 4 describes the results
obtained with the method and compares it with other
methods presented in the literature. Section 5 con-
cludes the paper and suggests future improvements.

1
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2 Prior work

In the literature predictions of passenger 
ows is
mainly based on historical data. An exhaustive review
has been done in 2017 by Liu and Chen2) describing
the di�erent developed methods in the di�erent trans-
portation areas. In 2012 Wei and al.3) predicted road
tra�c by decomposing the historical time series into
di�erent oscillatory modes. They then used a dense
neural network to predict the most correlated modes
to the original series and reconstruct it. Following the
same principle in 2015, Sun and al.4) used wavelets
to decompose the time series into di�erent oscillatory
modes. Then, a Support Vector Machine (SVM) was
trained to predict the modes and then �nally the time
series was reconstructed. Other decomposition of the
passenger 
ow have also been studied. Hybrid seasonal
decomposition method was proposed by Xie and al.
in 2014.5) In this method authors decompose the se-
ries into three components: daily, seasonal and irregu-
lar and predict them using support vector regression.
Kumar and al. in 20156) enhanced the Autoregres-
sive Integrated Moving Average (ARIMA) program by
adding a seasonality component, creating the Seasonal
ARIMA (SARIMA) program. Kumar also proposed a
method of time series prediction based on Kalman �l-
tering in 2017.7)

Concerning the neural network approach, Liu and al.2)

developed an improvement of dense neural networks to
predict the passenger 
ow. In their paper, an unsu-
pervised stacked autoencoder (SAE) is created to set
the initialization weights and biases of a dense neural
network. In most of the scenarios studied, the net-
work initialized by the SAE performed better than the
dense network alone. A di�erent approach based on
mathematical modeling was explored by Buire and al.
in 2021.9) In their paper, they modeled the shape of
the distribution of the passenger 
ow of each 
ight
using an exponentially modi�ed Gaussian distribution
(EMG). 10) This distribution appears in many natural
phenomenons11) and its parameters can be �tted to de-
scribe the distribution of passengers arriving at secu-
rity checkpoints before a 
ight. However, the accuracy
of predictions made with this method may be limited,
in particular when the passenger 
ow is close to zero.
A di�erent type of neural network was used by Mon-
mousseau and al. in 2020.8) In their model, authors
use a recurrent neural network made of 200 LSTM cells
to predict the passenger 
ow on some key points of the
Paris Charles de Gaulle airport. Authors indicate that
in the case of an airport, an overestimation does not

have the same cost as an underestimation. In order to
take this speci�city into account, the loss function of
the neural network was modi�ed from a standard Mean
Squared Error (MSE) to an � � PMSE which penal-
izes more severely the over-estimations of the passenger

ow. With E � and E+ being respectively the under-
estimation error and the overestimation error, this loss
function is given by the formula :

� � PMSE =
1

jData j

X

Data

(E � + (1 + � )E+ ))2 (1)

Authors also mention the di�culty of describing
and learning the operation of a security checkpoints
within an airport using only historical data.

This di�culty was also mentioned by Wilson and
al.,12) when they proposed the Security Checkpoint
Optimizer (SCO) in 2006. They introduced a program
to simulate the passenger 
ow and thus, simulate the
impact of a modi�cation of the security checkpoint
before applying it in reality. To model a security
checkpoint, Leone and al.13) proposed a modeling of
each element of the checkpoint such as X-ray scanners,
hand searches, explosive trace detectors etc. In that
way, they quanti�ed the performance of a checkpoint
in order to propose improvements and limit the
waiting time of passengers to ten minutes. To control
the passenger 
ow, Lange and al.14) introduced a
virtual queuing system. This virtual queuing system
give the passenger a time window to go to the security
checkpoint. This methods allows to control at any time
window the number of passengers in the checkpoint.

The di�culty of modeling the passenger 
ow in an
airport limits the performance of prediction tools such
as SVMs. However, more sophisticated networks such
as LSTMs require signi�cant computing power and
learning time. The di�culty of prediction comes es-
sentially from the large number of factors that in
u-
ence the time series. Applying a "divide and conquer"
strategy, by predicting each 
ight individually, would
allow to obtain good quality results while limiting the
required resources.

3 Model creation

This section presents the creation of the passenger

ow prediction model and the features extraction from
the data.

3.1. Principle of passenger 
ow prediction

As shown in Section 2, passenger 
ow prediction is
to determine the time series of the number of passen-
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ger passing through certain key areas. The literature
presents predictions of the entire time series based on
the data of the day such as in8) . This paper predicts
the time series of a complete day by summing up the
di�erent passenger 
ows, predicted with a simpler neu-
ral network for each 
ight.
At the Paris Charles de Gaulle airport, the type of

ight (short, medium or long haul) a�ects the room
in which boarding will take place. Then, the type of

ight in
uences the time distribution of passengers at
the checkpoint. For example, airlines will ask passen-
gers to present themselves earlier for long-haul 
ights.
Therefore, the neural network breaks up into several
neural networks tailored to each boarding room.

3.2. Data extraction

The dataset provided by Paris Charles de Gaulle
airport covers nine months of passenger 
ow at each
boarding rooms, from April 1st , 2019 to December
31th , 2019 with a time resolution of 10 minutes. This
dataset avoids COVID-19 impacts on air tra�c in
2020 and 2021. Therefore, the model will be more
likely to perform well when tra�c returns to normal.

For each passenger scanned at the security check-
point and for each 
ight the scan data gives directly:

ˆ Expected number of passengers on the 
ight
ˆ Estimated time at the gate
ˆ Type of movement (departure or arrival)
ˆ Origin (if arriving 
ight) or Destination (if

departing 
ight
From the date are extracted:

ˆ Weekday
ˆ First and last day of a weekend
ˆ Holidays
ˆ First and last day of holidays
ˆ Public holidays

From the origin/destination a feature is extracted:
ˆ Type of country

This feature represents whereas the 
ight is from
France to France, France to a Schengen country or
France to another country.

Weather data are not considered because a principal
component analysis demonstrates its negligible impact.
Figure 2 shows the explained variance as a function of
the number of features used. The curve 
atten on the
last three features (which represent weather data). A

at curve indicate that the corresponding features do
not add any useful information for the prediction.
This extraction results in a vector of 10 features for
each 
ight which will be given as an input to the neural

network.

Fig. 2: Explained variance ratio obtained with a princi-
pal component analysis performed on the data. Fea-
tures 11, 12 and 13 represents weather parameters
(rain quantity, minimal temperature, maximal temper-
ature).

3.3. Dense neural network creation

In order to predict the passenger 
ow at the di�erent
boarding rooms, a dense neural network is implemented
for each room. This type of network is simple to set up
and allows to approximate, after su�cient learning, the
behavior of a system. This type of network is generally
composed of an input layer, several hidden layers and
an output layer (Figure 3).

Fig. 3: Example of the structure of a dense neural net-
work.

In our model, the input layer is the same size as a

3
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feature vector (10). The output layer contains as many
neurons as the number of time steps in the time series
(Figure 4). In that way, the network predicts for each

ight the number of passengers entering the boarding
room at each time step.

Fig. 4: Example of the extraction of the time series
from the output layer.

After experiments carried out over the number and
sizes of the di�erent hidden layers, the structure re-
tained for the study was chosen as follow: each network
contains 4 hidden layers of size 16, 32, 32, 16 respec-
tively . The activation function of each neuron is the
Recti�ed Linear Unit (ReLu) :

ReLu (x) = max(0 ; x) (2)

To avoid problems such as over�tting and vanishing
gradient, dropout layers16) were added between each of
the hidden layers.
Table 1 summarizes the layers of the neural networks
used in this paper.

Layer Shape
Input 10

Dense 1 16
Dense 2 32

Dropout 20%
Dense 3 32

Dropout 20%
Dense 4 16

Output

Table 1: Summary of a network structure used to pre-
dict the passenger 
ow.

The loss function chosen for the networks is the Mean
Squared Error (MSE). Let D be the train set and h the
learning model, the MSE of h over D is given by the

equation :

MSE (h; D ) =
1

jD j

X

(x;y )2 D

(h(x) � y)2 (3)

3.4. Model evaluation

To evaluate the predictions done by the networks,
several metrics were chosen in order to compare the
time series predicted to the actual passenger 
ow.

First, the Mean Absolute Error (MAE) gives the dif-
ference between the two time series. The smaller the
MAE, the more accurate the prediction. This metric is
given by the following formula :

MAE (h; D ) =
1

jD j

X

(x;y )2 D

jh(x) � yj (4)

The coe�cient of determination R2 evaluates the
quality of the results. This score is given by the fol-
lowing equation :

R2(h; D ) = 1 �

P
(x;y )2 D (y � h(x))2

P
(x;y )2 D (y � �y)2 (5)

Where y is the value to be predicted, �y the mean of
y, h(x) the prediction of the model with the input x
and D the dataset.
The value of the R2 score ranges from�1 to 1. If the
score hits 1, it means the modelh makes a perfect pre-
diction. A R2 of 0 means the model is as performing as
constantly predicting the mean of the value each time.
And a negative coe�cient of determination means that
the model is worse than just predicting the mean value
each time and that the model does not give any useful
prediction.

4 Results

For each boarding room, the dataset has been ran-
domly split into two parts. 80% dedicated for training
and the remaining 20% for validation. Each network
described by the structure presented in the Section 3
has been trained during 30 epochs over the training
set. Training was performed with a standard back-
propagation algorithm using Adam optimizer15) on a
CPU Intel i5-1135G7 2.40 GHz. The performances of
the model are computed using the metrics described
in Section 3.4.. The performances are compared to the
performances of the LSTM-200 model of Monmousseau
and al.8) and the exponentially modi�ed Gaussian dis-
tribution of Buire and al. 9) . Unfortunately, the data
provided by CDG airport do not match perfectly those
used in the article by Monmousseau and al.8) and Buire
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and al9) . Thus, the comparison with their work could
only be carried out on certain departure rooms for8)

and on the total number of passengers at the airport
for9) .

4.1. Passenger 
ow on individual 
ight

In order to predict the total passenger 
ow at each
departure room, the chosen approach relies in predict-
ing the passenger 
ow of each 
ight separately. Un-
like what can be found in the literature where the pre-
diction is directly performed on the total 
ow (except
for9) ), here the 
ow is obtained by adding all the indi-
vidual passenger 
ows of each 
ight.
For each of the studied boarding rooms, one neural
network was implemented according to the structure
represented in Table 1. An example of passenger 
ow
prediction on an individual 
ight is displayed in Figure
5.

Fig. 5: Comparison between the actual passenger 
ow
(blue) and the predicted passenger 
ow (orange) on an
individual 
ight in the room CT2-A of CDG airport on
2019/12/17.

In order to validate the distribution given by the net-
work, results are compared to the results obtained by
Buire and al.9) with the EMG distribution method
(Figure 6).

The main problem that can be seen with EMG
method is the convergence to zero of the �rst part of
the curve. This part of the curve will never reach zero,
so the model will always predict a non-zero number of
passengers long before the scheduled departure of the

ight.

Fig. 6: Mean predicted passenger 
ow before depar-
ture on an individual 
ight using exponentially modi-
�ed Gaussian distribution 9) .

Moreover, when all 
ights are summed up to deter-
mine the total 
ow of passengers, the addition of the
falsely predicted passengers will give a non-negligible
number of passengers predicted at times when there
should not be any. This defect is particularly visible in
Figure 9a between midnight and 4:00 am when there
should be no passenger in the departure rooms.
With a neural network this problem does not arise, be-
cause as the learning process proceeds, the network will
give the value zero on the �rst neurons of the output
layer. We can see in Figure 7 that the neural network
approach allows to limit the prediction of passengers
on the periods when no passenger are present.

Fig. 7: Predicted mean passenger 
ow on an individual

ight using Dense Neural Network.

Figure 7 shows that the network has well learned
the distribution of the passenger 
ow in the boarding
room for a 
ight. The MAE between the predicted
and actual series in Figure 7 is about 0.049 which can
be considered as highly satisfactory. Indeed, the shape
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of the predicted curve (in orange) closely follows the
actual curve (in blue).

4.2. Total passenger 
ow prediction

At security checkpoints, passengers are not sepa-
rated according to their 
ight. All passengers wishing
to board in a certain room, will pass through the same
checkpoint or the same set of checkpoints. What is im-
portant for the airport operator to know is how many
checkpoints need to be opened and how many agents
are required. This can be directly inferred thanks to
passenger 
ow prediction. The idea presented here is
to sum up all the passenger 
ows expected for each

ight to obtain the global 
ow on each boarding room.

The evaluation of the total 
ow prediction for each
boarding rooms is given in Table 2. The total 
ow of
passengers at CDG airport is also showed in this table.
A graphical representation of the predicted versus the
actual passenger 
ow on one validation day for four
di�erent rooms is displayed in Figure 8.

10 minutes time step 1 hour time step
Room MAE R2 Score MAE R2 Score

C2F-F1 11 0.746 47 0.844
C2F-F2 13 0.751 51 0.869
C2E-S3 13 0.771 62 0.858
C2E-S4 4 0.896 16 0.971

C2D-D53 6 0.713 28 0.757
C2D-D62 2 0.605 12 0.679
C2A-A40 2 0.658 7 0.845
C2A-A47 2 0.541 5 0.812

CT1-B 1 0.654 4 0.810
TOTAL 34 0.899 134 0.947

Table 2: Performances of the model on the di�erent
boarding rooms of CDG airport.

Table 2 shows a signi�cant di�erence in terms of R2

score as a function of time resolution. The use of a
dense network does not allow the elements of the time
series to be linked together as would have done a LSTM
network. Thus, the smaller the time step, the more
di�cult it will be for the network to predict small vari-
ations in the time series. The smaller the time step,
the lower the correlation between the predicted series
and the actual series. This leads to a decrease of the
R2 score. However, in operations this decrease of the
R2 score would not be a signi�cant problem. Indeed,
the schedule of security agents does not require a 10
minutes precision and uses rather a time step of one
hour. Table 2 also shows a signi�cant di�erence in per-
formance between the di�erent rooms. This di�erence
can be explained by the di�erence in the number of


ights for each room. Each boarding room does not
receive the same number of 
ights, and a room with
more 
ights means a larger amount of data for the neu-
ral network. Rooms with less 
ights like C2A-A47 or
C2D-D53 have less training data which implies that
their networks are more likely to be less performing.

4.3. Comparison with prior work

The paper of Monmousseau and al.8) gives predic-
tions over the passenger 
ow in the C2F terminal. This
terminal is also available in our dataset. Therefore, the
dense network can be compared with the LTSM200
of Monmousseau and al. The LSTM200 model gives
a prediction with an MAE of 16 and an R2 score of
0.86 with a 10 minutes time step in the best case on
the C2F terminal. The dense network reaches the
accuracy the LSTM200 in terms of MAE by reducing
it to 12. But where an LSTM is speci�cally designed
for time series predictions, the dense network struggle
to have a strong correlation between the actual and
predicted passenger 
ows. Therefore, theR2 score of
0.75 obtained with the the dense network is lower than
the 0.86 obtained with the LSTM.
Paper9) present an approach which predict the total
passenger 
ow over the entire airport using EMG. The
two predictions of the total passenger 
ow on a same
day are shown in Figure 9. The MAE given by authors
on their result with the EMG is 305 which is more than
two times bigger than the 134 obtained by the dense
network. The R2 score of the prediction obtained with
the EMG is not given by the authors. Nevertheless,
the R2 score of 0.94 obtained by the dense network
on the total can be considered satisfactory. In Figure
9a, a signi�cant number of passengers was predicted
between midnight and 4am with the EMG method.
This issue did not append with the dense neural
network as shown in Figure 9b.

5 Conclusion and perspectives

This paper investigates predicting the passenger 
ow
at the di�erent boarding rooms of Paris Charles de
Gaulle airport with dense neural networks. Perfor-
mances of such neural networks were evaluated using
the MAE ans R2 score. The results are promising since
the model outperformed the exponentially modi�ed
Gaussian distribution model proposed in 2021 and gave
equivalent prediction in terms of MAE as a more so-
phisticated LSTM model. This work shows that small
dense networks can give, on speci�c problems, similar
results than models requiring signi�cantly more com-
putational power. Thanks to the small computational
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(a) C2E-S3 (b) C2E-S4

(c) C2F-F1 (d) CT2-A

Fig. 8: Comparison between predicted passenger 
ow (orange) and actual passenger 
ow (blue) at four boarding
rooms (C2E-S3, C2E-S4, C2F-F1, CT2-A) of the CDG airport on 2019/12/17 with a time step of one hour.
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(a) Total passenger 
ow with EMG method 9) (b) Total passenger 
ow with dense neural network

Fig. 9: Comparison between predicted and actual total passenger 
ow at CDG airport on 2019/12/17 with a time
step of one hour.

power needed, this method could be tested in opera-
tion in order to validate the performances obtained in
this study. Future work should investigate �ne tun-
ing the parameters of the network such as modifying
the activation functions of the hidden layers. Struc-
ture optimization such as network pruning can also be
performed to enhance networks performances.
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