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Slot allocation in a single airport aims to maximize the utilization of airport declared capacity, while slot alloca-

tion in a multi-airport system (MAS) has to take airspace capacity into account. Because the limited capacity of certain 
departure/arrival fixes in the terminal airspace can cause unnecessary flight delays. The uncertainty of flying time 
between airport and congested fixes makes it even more complicated for slot allocation in a MAS. Traffic flow may 
be over capacity when the flying times of flights change. In this paper, we propose a mixed integer-programming 
model for slot allocation in a MAS. The objective of the model is to minimize the total displacements of flights in the 
MAS while considering all the capacity constraints as well as the uncertainty of flying time. The constraints at depar-
ture/arrival fixes are transformed into chance constraints, and Lyapunov theorem is applied for the transformation. To 
test the proposed model, a case study of schedule optimization in the MAS of Guangdong-Hong Kong-Macao Greater 
Bay is presented. Specifically, the impact of the uncertainty of flying time from five airports to airspace fix YIN is 
investigated. Results show that the total displacements increased if the uncertainty of flying time was considered. The 
optimized schedule, however, is more robust which can satisfy capacity constraints in various scenarios. 

 

Key Words: Slot Allocation, Multi-airport System, Uncertainty Model, Chance Constraint 
 
1.  Introduction 
 

Slot allocation is an important means of air traffic flow 
management which can effectively balance air transport 
demand and airport capacity. At a strategic level, slot al-
location for a single airport can improve the efficiency 
and effectiveness of the utilization of existing resources. 
Over the decades, the constraints and dependencies be-
tween different airports in a multi-airport system (MAS) 
have become more prominent, mainly due to the conflict 
in using shared departure/arrival fixes and routes. Tradi-
tionally, slot allocation has to consider airspace capacity. 
However, there may conflict between flights from differ-
ent airports at a shared departure/arrival fix when allo-
cating slots for each airport individually. Thus, it is nec-
essary to consider all the airports at the same time for slot 
allocation to alleviate congestion and delay in the whole 
region.  

The Estimated Time Over (ETO) fix  of flight has to be 
calculated from the planned departure/arrival time of 
flights and the route flying time. The flying time varies 
due to traffic flow management, weather, airport conges-
tion, etc., which makes the ETO uncertain. It leads to the 
fact that the flight flow through the fix  within a certain 
time window varies.  

In this paper, we propose a model that considers both 
airport declared capacity and airspace(fix) capacity, as 
well as the uncertainty of flying time for slot allocation 
in a MAS. 
 
 

2.  Literature review 
 

The earliest work on MAS may be traced back to 2008 
when the U.S. Joint Development and Planning Office 
(JDPO) first defined a multi-airport,1)as a cluster of air-
ports served by multiple airports that are in close geo-
graphical proximity and interdependent on each other for 
inbound and outbound air routes, such that MAS forms a 
metroplex (a combination of metropolitan and complex). 

Slot management problems can be classified into three 
categories: strategic, tactical, and pre-tactical. Most 
scholars studied the slot allocation problem at the tactical 
level to determine the best strategy for dynamically 
matching air traffic demand and capacity. In 2017, Zo-
grafos et al. conducted a review of the current research 
on the slot allocation problem at the strategic stage and 
the declared capacity modeling. They pointed out there is 
the need for further research to explore optimization ob-
jectives of the model and the need to enrich them with 
equity, resource utilization and environmental consider-
ations. Future models can be incorporate airlines' toler-
ance and acceptability of flight allocation results, or to 
develop stable and feasible models that capture the com-
plexity and dynamics of airport operations and weather 
uncertainty.2 In 2018, Ribeiro et al. proposed a novel pri-
ority-based multi-objective slot allocation model (PSAM, 
priority -based multi-objective flight time allocation 
model), which is compliant with IATA regulations.3) In 
2019, Z. Ye et al. developed a linear integer program-
ming model to determine whether implementation diffi-
culty can be used as a new mechanism to weaken grand-
fathering rights for the slot allocation. The results 
showed that by weight setting, the implementation 
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difficulty can be significantly reduced without causing 
excessive shifts and disruptions in existing priorities.4) In 
2021, Zografos et al. considered the blocking problem of 
assigning flight moments at coordinated airports and pro-
posed a new model for slot assignment that considers the 
regularity of schedules by limiting the range of assigned 
times. In 2022, Shui Xiaoyu et al. established a slot allo-
cation model considering the fairness between airports, 
and used the Gini coefficient as a measure to compare 
different optimization plans based on peak demand and 
off-peak demand.5) 

Research work on uncertainty in air traffic flow man-
agement dates back to 2000s. In 2003, Wanke et al. de-
veloped a model for airspace demand forecasting analy-
sis based on prototype TFM decision support system ob-
servations that quantifies NAS airspace demand forecast-
ing. The statistical distribution of forecast errors allows 
the development of new techniques to display and exploit 
sector demand forecasts with known uncertainties.6)  In 
2008, Hafner et al. tried to improve the predictability of 
airline schedules by enhancing the capability of flight 
schedules to resist Ground Delay Program (GDP) and in-
clement weather. They proposed strategic search heuris-
tics to greatly improve the reliability of airline schedules 
by assigning airport takeoff and landing time slots to 
each flight in a schedule in a network of airports.7) In 
2011, Agogino et al. investigated linear programming 
models and nonlinear evolutionary algorithms for solving 
large-scale air traffic optimization problems. They ar-
gued that both methods suffer from perfection assump-
tions and that model robustness may be flawed when 
there is uncertainty in the problem.8) In 2014, Luca 
Corolli et al. developed two stochastic programming 
models based on the certainty single-airport model pro-
posed by Zografos et al 9) . Then the model is applied to 
European airports, where a set of test cases showed a to-
tal of 58% reduction in delays.10) In 2020, Jacquillat ad-
dressed the problem of tactical operational procedures 
and strategic planning interventions being treated in iso-
lation in air traffic management. An integrated model of 
airport network strategy and tactics is proposed that 
jointly optimizes planning interventions and ground 
waiting operations across a network of airports under op-
erational uncertainty.11) 

In summary, many studies have addressed slot alloca-
tion problems for a single airport, or studied tactical air 
traffic flow management problems under uncertainty.  
However, no study has been done on slot allocation in a 

MAS that consider the uncertainty of flying time in the 
terminal airspace. In this paper, we developed a robust 
programming model to improve the overall adaptability 
and robustness of the optimization scheme.  
 
3.  Model 

 
The objective of the model in this paper is to minimize 

the total displacements of flights given constraints from 
airport declared capacity, the capacity of key fixes in the 
airspace and the operating rules, and the uncertainty of 
flying times on the routes. The following reasonable as-
sumptions are made before proceeding with the modeling. 

Assumption 1. The slot in this paper does not refer to 
a point in time, but a time slice. Each segment has a start 
time and length. Airports can use these time periods to 
land and take off flights. 

Assumption 2. The turnaround time of a flight must not 
be greater than the maximum turnaround time or less than 
the minimum turnaround time. The turnaround time is the 
time interval between the arrival of the preceding flight 
and the departure of the following flight, during which 
operations such as passenger loading and unloading, air-
craft refueling, etc. need to be completed. 

Assumption 3. We only consider flights from airports 
within the MAS. We do not consider the flight takeoff 
and landing times and turnaround times at airports out-
side the MAS. 

Assumption 4: Fix capacity has to be calculated from 
historical data. We use traffic volume during periods with 
significant flight delays as the capacity. 

Assumption 5. The frequency of different flying time 
observed in the historical data is equal to the probability 
of occurring in the future. Thus, the probability of flying 
time can be obtained by fitting the historical data. 
3.1.  Model Description 

The inputs of the model in this paper are 1) the original 
flight schedule of the MAS, 2) the capacity of each air-
port and fix, and 3) the flying time from each airport to 
the fix . 

The output is the optimized flight schedule. The deci-
sion variables of the model are set as follows 

/arr dep
it itx x :0-1 variable, �T�Ü= 1 means that flight i is sched-

uled to arrive/depart no earlier than time slice t after optimiza-
tion; �T�Ü= 0 otherwise. ,i F t T� • � • 

i�' : The total displacements of flight i . The unit of displace-
ment is 5 minutes. i F�•  

The other model parameters are shown in Table 1. 
 

Table 1.  Model notation and description. 

Notation Description 

T  Set of time slots throughout the day. 1,2,3...t T� �• 

F  Set of flights in the MAS. 

Q  Set of fix es in the MAS. 

��  Set connecting flight pairs in the MAS. 

/ deparr
k kF F  Set of arrival/departure flights of airport k in the MAS. ,dep arr

kkF F F�•  
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/arr dep
q qF F  Set of arrival/departure flights in the MAS passing fix  q. 

K  Set of airports in the MAS. 

1
ij�W Minimum turnaround time between connecting flights. �� ��,i j �• ��  

2
ij�W Maximum turnaround time between connecting flights. �� ��,i j �• ��  

/arr dep
it it� Z � Z 1 if  arrival/departure time of flight i  is not earlier than time slice t before optimization; 0 otherwise. ,i F t T� • � • 

/arr dep
i iS S  Arrival/Departure time slot that flight i is scheduled before optimization. i F�•  

/arr dep
i ik k  The airport of arrival/departure flight i . i F�•  

/ deparr
kq kqft ft  Fly time of arrival/departure route between airport k and fix  q. ,k K q Q� • � • 

/ deparr
kt ktNK NK  Arrival/Departure flight number of airport k in time period t. ,k K t T� • � • 

/arr dep
qt qtNQ NQ  Arrival/Departure flight number of fix  q in time period t. ,q Q t T� • � • 

/ /deparr all
kt ktktC C C  Arrival/Departure/Total capacity of airport k in time period t. ,k K t T� • � • 

qtD  Total capacity of fix  q in time period t. ,q Q t T� • � • 

2,iqt iqt� P � V Mathematical expectation and variance of chance that flight i  passes fix  q in time period t . , ,i F q Q t T� • � • � • 

2,qt qt� P � V Mathematical expectation and variance of traffic passing fix  q in time period t. ,q Q t T� • � • 

/i ieta etd  Optimized scheduled arrival/departure slot of flight i . 

mt  The last time slot that flights must be adjusted to in slot allocation. 

3.2.  Objective  
  The objective of the model is to minimize the total dis-
placements of all the flights. The calculation of the dis-
placements for each flight is given by Eq. (2). 

 min i
i F

Z
�•

� �'�¦  (1) 

 

,

,

arr arr arr
it it

t T
i dep dep dep

it it
t T

x i F

x i F

�Z

�Z

�•

�•

� � � � •
�°�°� ' �  �®

� � � •�°
�°�¯

�¦

�¦
 (2) 

3.3.  Certainty constraints 
3.2.1.  Existence of flights 

Eq. (3)-(6) ensure that decision variables are set to an 
initial of 1 and ending of 0 throughout the day. Each 
flight is assigned at least one time slot. 

 ,1 1dep dep
ix i F�  � � � •  (3) 

 , 0
m

dep dep
i tx i F�  � � � •  (4) 

 ,1 1arr arr
ix i F�  � � � •  (5) 

 , 0,arr arr
i tmx i F�  � � � •  (6) 

3.2.2.  Uniqueness of flights 
Constraints (7) and (8) are flight uniqueness con-

straints. The decision variables must be monotonically 
decreasing with time t, ensuring that each flight is as-
signed at most 1 time slot. 

 , , 1 ,depdep dep
i t i tx x t T i F��� t � � � • � � � •  (7) 

 , , 1 ,arr arr arr
i t i tx x t T i F��� t � � � • � � � •  (8) 

3.2.2.  Turnaround constraints for connecting flights 
Constraints (9) and (10) are connecting flight turna-

round constraints. For connecting flights, Eq. (9) limits 
the turnaround time to be greater than the minimum con-
necting time. Eq. (10) limits the turnaround time to be 
less than the maximum connecting time. 

 �� �� �� ��1
, , ,arr dep

i t j t ij
t T

x x i j�W
�•

� � � t � � � •�¦ ��  (9) 

 �� �� �� ��2
, , ,arr dep

i t j t ij
t T

x x i j�W
�•

� � � d � � � •�¦ ��  (10) 

3.2.3.  Airport capacity constraints 
Each airport has its arrival/departure declared capacity 

that set the limitation of slots. The number of arrival and 
departure flights at airport i in a time period cannot ex-
ceed the specified capacity. Eq. (11) and Eq. (12) give 
the calculation of the arrival and departure traffic for 
each time period of airport. Eq. (13) is the arrival capac-
ity limit of airport. Eq. (14) is the departure capacity limit 
of airport, and Eq. (15) is the total capacity limit of the 
airport. 

 �� ��, , 1
dep

k

arr arr arr
kt i t i t

i F

NK x x ��

�•

� ���¦  (11) 

 �� ��, , 1
dep

k

dep depdep
i t i tkt

i F

NK x x ��
�•

� ���¦  (12) 

 ,arr arr
kt ktNK C t T k K� d � � � • � � � • (13) 

 ,dep dep
kt ktNK C t T k K� d � � � • � � � • (14) 

 ,deparr all
kt ktktNK NK C t T k K� � � d � � � • � � � • (15) 
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3.2.4.  Fix capacity constraints 
There are shared arrival and departure fixes in the 

MAS. The capacity of fix determines the number of 
flights that fix can serve per unit time. Eq. (16) and Eq. 
(17) give the calculation of the arrival and departure 
flight traffic passing fix q in time period t. In this case, 
the passing time of the arrival/departure flight is derived 
from the planned time of the flight and the flying time 
from the airport to the fix. Eq. (18) is the capacity con-
straint of fixes. Again, the arrival and departure traffic 
cannot exceed the capacity of the fix in any time period. 

 �� ��, , 1
,

arr arr
kq kq

arr arr
q i

arr arr arr
qt i t ft i t ft

i F k k

NQ x x
� � � � � �

� • �  

� ���¦  (16) 

 
, , 1

,

dep dep
kq kqdepdep

q i

dep depdep
qt i t ft i t ft

i F k k

NQ x x
� � � � � �

� • �  

� § � ·� ��� ¨ � ¸
� © � ¹�¦  (17) 

 ,arr dep all
qt qt qtNQ NQ D t T q Q� � � d � � � • � � � • (18) 

3.3.  Uncertainty constraints 
3.3.1.  Chance Constraint Establishment 

In Eq. (16) and Eq. (17), the arrival and departure traf-
fic passing a certain fix in a certain time period depend 
only on the decision variables. However, in practice, 
whether arrival or departure, the airport-to-fix  flying 
time is not a certainty value, but a random variable fol-
lowing certain distributions. Therefore, for a specific set 
of decision variables, the arrival and departure traffic of 
a certain fix in a certain time window is also a random 
variable. Based on the above discussion, we will use the 
chance constraints in robust optimization method to solve 
the uncertainty problem. Where �D is the violation proba-
bility of the chance constraint, showing the degree of vi-
olation that the decision maker may accept. 

 �� �� 1 ,arr dep all
qt qt qtP NQ NQ D t T q Q�D� � � d � t � � � � � • � � � • (19) 

3.3.2.  Chance constraint transformation  
From equations (16), (17) and (18), we have 

 

�� ��
�� ��, , 1

,

, , 1
,

arr arr
kq kq

arr arr
q i

dep dep
kq kqdepdep

q i

arr dep all
qt qt qt

arr arr
i t ft i t ft

i F k k

dep dep
qti t ft i t ft

i F k k

P NQ NQ D

x x

P
x x D

� � � � � �
� • �  

� � � � � �
� • �  

� � � d

� § � ·� � � �� ¨ � ¸
� ¨ � ¸

� � ¨ � ¸
� § � ·� ¨ � ¸� � � d� ¨ � ¸� ¨ � ¸� © � ¹� ¨ � ¸

� © � ¹

�¦

�¦

 (20) 

For 
, 1, arr

arrkq i t ftkq

arr arr
i t ft

x x
� � � ���

� § � ·
��� ¨ � ¸

� © � ¹
 and 

, , 1dep dep
kq kq

dep dep
i t ft i t ft

x x
� � � � � �

� § � ·��� ¨ � ¸
� © � ¹

: 

They can be considered as random variables obeying 
some distribution. According to Lyapunov theorem, 
when n is large, the sum of n random variables approxi-
mately obeys a normal distribution, which can be ex-
pressed as Eq. (21). 

 

�� ��

�� ��

, , 1
,

2
, , 1

,

~ ,

arr arr
kq kq

arr arr
q i

dep dep
kq kqdepdep

q i

arr arr
i t ft i t ft

i F k k

dep dep
qt qti t ft i t ft

i F k k

x x

x x N � P � V

� � � � � �
� • �  

� � � � � �
� • �  

��

� § � ·� � � �� ¨ � ¸
� © � ¹

�¦

�¦
 (21) 

As a result, the constraint of Eq. (20) can be trans-
formed as Eq. (22). 

 

�� ��, , 1
,

, , 1
,

2 2

2

arr arr
kq kq

arr arr
q i

dep dep
kq kqdepdep

q i

arr arr
i t ft i t ft

i F k k

dep dep
qti t ft i t ft

i F k k

arr dep
qt qt qt qt qt

qt qt

qt qt

qt

qt

x x

P
x x D

NQ NQ D
P

D

where

� P � P

� V � V

�P

�V

�P

� � � � � �
� • �  

� � � � � �
� • �  

� § � ·��� ¨ � ¸
� ¨ � ¸
� ¨ � ¸

� § � ·� ¨ � ¸� � � � � d� ¨ � ¸� ¨ � ¸� © � ¹� ¨ � ¸
� © � ¹

� § � ·� � � � � �
� ¨ � ¸� �d
� ¨ � ¸
� © � ¹

� § � ·��
� ¨ � ¸� �)
� ¨ � ¸
� © � ¹

�¦

�¦

2 2,

q q

iqt qt iqt
i F i F

� P � V � V
� • � •

� � � ¦ � ¦

 (22) 

Where �)  denotes the distribution function of the 
standard normal distribution. Eq. (25) and Eq. (26) give 
the solutions for the expectation and variance of the traf-
fic passing fix  q in time period t. 

, , 1 ,arr arr arr
kq kq kqi t ft i t ft i t ft

let x x x�'� � � � � � � �
� � �   

, arr
kq

i i t ft
t T

and eta t x�' ��
�•

� �˜�¦  

 

�� ��
�� �� �� ��
�� ��

,

1 0

,

arr
kq

iqt i t ft

arr arr
kq i kq i

arr arr
kq i

E x

P ft eta t P ft eta t

P ft eta t i F t T

�P �' ��
� 

�  �  � � � u � � � z � � � u

�  �  � � � � � • � •

 (23) 

 
�� �� �� ��

22
2

, ,

2

arr arr
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Thus, Eq. (19) can be transformed into Eq. (25). 
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1qt qt
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D �P
�D

�V

� § � ·��
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� ¨ � ¸
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 (25) 

Eq. (26) can be obtained from the distribution function 
of the standard normal distribution. 

 �� ��-1
2

1qt qt

qt

D �P
�D

�V

��
� t � ) � �  (26) 

3.5.  Solution approach 
The model is implemented using Python with Gurobi 

solver. The optimization problem in this paper is mixed-
integer programming, which is one of the non-convex 
programming. The parameter “NonConvex”  is set to 2. 
The model is run on Window 10 with 64-bit operating 
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system with 16GB RAM and i7 processor. 
 

4.  Case study 
 
4.1.  Experiment setup 
4.1.1.  Experiment subject 
  In this paper, the Guangdong-Hong Kong-Macao 
Greater Bay Area of China is selected for the study. The 
MAS includes five airports, Guangzhou Baiyun Interna-
tional Airport (ZGGG), Shenzhen Baoan International 
Airport (ZGSZ), Zhuhai Jinwan Airport (ZGSD), Macau 
International Airport (VMMC) and Huizhou Pingtan Air-
port (ZGHZ). Since the flights of Hong Kong Interna-
tional Airport are basically isolated from other airports, 
they are not considered. Figure 1 shows the structure of 
airspace of the MAS. It can be seen that the airspace of 
the MAS is complex. Several airports have to share use 
of a single departure/arrival fix. 

 
Fig. 1.  MAS in the Guangdong-Hong Kong-Macao Greater Bay 

Area. 
The flight schedule on December 21, 2019 is obtained 

as the model input. Statistically, a total of 2,969 flights 
were planned for the MAS including 1,494 arrival flights 
and 1,475 departure flights. 

 
Fig. 2.  Fix traffic without optimization (only part shown). 

 

 
Fig. 3.  Traffic change in YIN. 

 

  The departure fix, YIN , in the MAS, is selected for the 
study of flying time uncertainty because of the following 
considerations. 

First, a total of 462 flights passed through YIN on De-
cember 21, 2019. It can be seen from Fig. 2 that the flight 
traffic passing through YIN point ranks the third and the 
traffic accounts for a relatively high percentage.  

Second, YIN is a common departure point for five air-
ports in the MAS. Thus it is representative to select this 
point for the optimization considering flying time uncer-
tainty in the MAS. 

Third, YIN has a high number of flights during peak 
hours and exceeds the capacity constraint frequently. Ef-
fectively solving the flying time uncertainty to this point 
will provide a reference for other fixes. Figure 3 shows 
the traffic of YIN before optimization, where the flying 
time from the airport to the fix is calculated using the 
median of historical data. From the figure, it is clear to 
see that the traffic of YIN fix  is very high and full of ups 
and downs, and there are many points where the capacity 
limit is exceeded. 
4.1.2.  Parameter setup 

In this paper, the length of each slot is set to 5 minutes. 
The airport capacity is set according to the declared ca-
pacity of the airport; the fix  capacity is set with reference 
to China's Technical Specification for Airport Moment 
Capacity Assessment. The time window of capacity is di-
vided into 15-minute capacity and 1-hour capacity. The 
minimum connecting time of flights is set to 30 minutes 
and the maximum connecting time is set to 180 minutes 
according to China's Civil Aviation Normal Flight Statis-
tics Measures. The probability distribution of flying time 
from airports to fixes is obtained by fitting the actual his-
torical flight operation data of December 2019. The fre-
quency distribution of flying time from ZGSZ to YIN for 
departing flights is shown in Fig. 4. It can be seen that 
the flying time from ZGSZ to YIN presents an obvious 
form of multi-peak distribution, showing the uncertainty 
of flying time.  
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Fig. 4.  Flying time distribution of departure flights from ZGSZ to 

YIN . 
 

For the uncertainty constraint, we counted the flying 
time from each airport to YIN. According to the histori-
cal distribution, two cases with equal probability are di-
vided. Each case corresponds to a value of flying time. 
For the certainty constraint, the flying time is taken as the 
median of the historical data. The range of flying time for 
the uncertainty constraint and the certainty condition are 
shown in Table 2. 

Table 2.  The flying time from different airports to YIN. (unit: 5 

minutes) 

Airport uncertainty certainty 
VMMC { 4,5}  5 
ZGGG { 2,3}  3 
ZGHZ {4,5}  5 
ZGSD {5,5}  5 
ZGSZ { 4,4} 4 

 
We adjust the violation probability to different values 

to examine the optimization results under different ac-
ceptance levels. We set the certainty model output as the 
control group, and then obtain a total of four different 
optimization schedules. The differences between the dif-
ferent optimization strategies are analyzed in the follow-
ing section. 
4.2.  Results  
4.1.  Slot displacements 

The total schedule displacements corresponding to the 
four different optimization schemes are shown in table 3. 
We can see that the total displacements are gradually in-
creased with the decreasing of violation probability. This 
is mainly caused by the increasingly strict conditions of 
the chance constraint.  

In the certainty scenario, the flying times from each 
airport to the fix are constant values. Thus, the ETO is 
completely determined by the flight's departure/arrival 
time. Therefore, a flight will only play an impact on the 
traffic within a specific time window of the fix . 

Under uncertainty constraint, the flying time from 
each airport to the fix is uncertain, and the ETO is deter-
mined by both the departure/arrival time and the flying 

time. This leads to the situation that a single flight may 
affect more than one time window of the fix. Therefore, 
considering possible flying time in uncertainty optimiza-
tion could make the model more conservative, while the 
total displacements increase as the probability of viola-
tion decreases. 

In theory, the violation probability should be as small 
as possible. However, it is necessary to consider the eco-
nomic cost of the total displacements due to different vi-
olation probabilities. In this paper, after verifying the op-
timization results of various values of violation probabil-
ity, we found that �D=0.4 can basically satisfy the capacity 
constraint in various scenarios, and �D=0.3 can completely 
satisfy the capacity constraint in various scenarios. 
Therefore, a smaller value of �D is no longer necessary, 
otherwise it will only increase the economic cost brought 
by unnecessary flying time displacements. 
Table 3.  Optimization results of the four schemes. (unit: 5 minutes) 

Schemes Displacements 
Scheme 1(certainty) 570 
Scheme 2(�D=0.4) 647 
Scheme 3(�D=0.3) 756 
Scheme 4(�D=0.2) 975 

 
4.2.  Traffic  at departure fix YIN  

The purpose of considering flying time uncertainty is 
to enhance the robustness of the optimization results. The 
optimized flight schedule should satisfy the capacity con-
straint of fixes with different flying time for different op-
eration scenarios. To examine this effect, a total of 8 ex-
perimental scenarios S1 to S8 are set up, and the flying 
time from the airport to the fix differ in the 8 experi-
mental scenarios, as shown in Table 4.  
Table 4.  Flying time under different experimental scenarios. (unit:  

5 minutes) 

Airport S1 S2 S3 S4 S5 S6 S7 S8 
VMMC  5 4 5 4 5 4 5 4 
ZGGG 3 3 2 2 3 3 2 2 
ZGHZ 5 5 5 5 4 4 4 4 
ZGSD 5 5 5 5 5 5 5 5 
ZGSZ 4 4 4 4 4 4 4 4 

 

 
Fig. 5.  Traffic exceeding the capacity of YIN. 
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We tested the four schemes in different experimental 
scenarios. We investigated whether different optimiza-
tion plans in different experimental scenarios will cause 
the traffic to exceed the capacity. We found that the op-
timization results of scheme 3 and 4 can be perfectly 
cover all possible scenarios. Schemes 1 and 2 may have 
traffic exceeding the capacity. In different scenarios, the 
flights that exceed the capacity of scheme 1 and scheme 
2 are shown in Fig. 5. 

It can be seen from the figure that the traffic is over 
capacity in 7 scenarios from S2 to S8 in the basic model. 
While the optimized results of scheme 2 only slightly ex-
ceeds the capacity in a few cases. Even if the traffic ex-
ceeds the fix capacity, the number of flights is relatively 
small. In the following, we select S1, S6 and S8 for fur-
ther analysis. The fix traffic changes corresponding to S1, 
S6 and S8 are shown in Figs. 6, 7 and 8. 

 In the figures, non-opt represents the original traffic 
calculated from schedule. Cer-opt represents the traffic 
obtained by basic model, while uncer-opt-al-
pha=0.4/0.3/0.2 represents the traffic with uncertainty 
optimization corresponding to different values of �D. Ob-
serving the traffic change in YIN in different operation 
scenarios with different optimization schemes, we can 
have the following conclusions. 

For scenario 1, the traffic with certainty optimization 
and uncertainty optimization does not exceed the capac-
ity of the fix.  

However, for S6 and S8, the traffic with certainty op-
timization exceeds the capacity of the fix , while the traf-
fic with uncertainty optimization hardly exceeds the ca-
pacity. Only traffic in scheme 2 under S6 exceeds by one 
flight. From this it can be concluded that when the viola-
tion probability in the chance constraint reaches a certain 
threshold, even if there is still a violation probability, 
there will be no violation of the capacity constraint in ac-
tual operation. 
 

 
Fig. 6.  Traffic in YIN under S1. 

 
Fig. 7.  Traffic in YIN under S6. 

 

 
Fig. 8.  Traffic in YIN under S8. 

 

4.3.  Exploration of violation probability value 
We further explore the impact of different values of 

the violation probability on the results, and we obtain the 
relationships between the total displacements and the vi-
olation probability �D as shown in Fig. 9. As can be seen 
from the figure, the objective function changes in a step-
like manner with the probability of violation, because the 
number of flights within 15 minutes is not continuous 
variables, but discrete variables. 

 

Fig. 9.  The relationships between total displacements and �D. 
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5.  Conclusion 
 

In this paper, we developed a chance-constraint model 
that takes the uncertainty of route flying time into ac-
count to improve the robustness of MAS schedules. The 
chance constraint is introduced for the capacity con-
straint of fixes within the MAS. Gurobi solver is applied 
to find the optimal solutions. A case study of Guangdong-
Marco-Hong Kong MAS is presented.  

1) The chance-constraint model is more conservative 
than the certainty optimization model. This is supported 
by the fact that the total slot displacements are higher in 
the former model than that in the later model. 

2) The cost of uncertainty model increases as the vio-
lation probability decreases. There is a negative correla-
tion between the value of the objective function value and 
the value of �D. 

3) The uncertainty model is more robust than the cer-
tainty optimization model. We found that the former op-
timized flight schedule can be well applied in various op-
eration scenarios with different values of route flying 
time without exceeding the capacity of fixes. 

4) The optimization results with �D=0.3 can basically 
satisfy the capacity constraints under different experi-
mental scenarios. Considering the slot displacements cost 
and operational delay cost, it is suggested that 0.3 is suf-
ficient for the actual optimization. 

There are still  several limitation of the current work, 
and a few of areas that are deserved for future research. 

1) We only considered the uncertainty constraint of 
one typical fix in the MAS. The flying times to other 
fixes are treated as constant values. The uncertainty con-
straints of all fixes can be considered in the future. 

2) Lyapunov theorem is used to solve the chance con-
straint. Its applicability condition should be that the 
larger the sample size is, the better. The results for such 
a situation in this paper will have some errors. Thus, 
other solving methods should be done later. 

3) The time windows in the fix capacity and airport 
capacity constraints are in a non-rolling form. A rolling 
form will be considered in the future to make the capacity 
constraints more stringent. 
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