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Slot allocationin a single airporaims to maximize the utilization of airport declared capacity, while slot all
tion in a multiairport systenfMAS) has to take airspace capacity into accoBaetause tharhited capacity of certain
departure/arrival fixes ithe terminal airspace can cause unnecessary flight delays. The uncertainty of flying time
between airport and congested fixaakes it even more complicatéat slot allocation in a MASTraffic flow may
be over capacity when the flying times of fliglisange In this paperwe propose a mixed integprogramming
model for slot allocation in a MAS. The objective of the model is to minimize the total displacements of flights in the
MAS while consideringall the capacity constraints as well as the uncertainty of flying The constraints at depar-
ture/arrivalfixes aretransformed into chanamnstraing, and Lyapunovheorem is applied for the transformation. To
testtheproposed modeh case study of schedule optimizatiothe MAS of Guangdong-Hong Kong-Macao Greater
Bay is presented. Specificallhe impact of the uncertainty of flyirtgne from five airports to airspadiex YIN is
investigatedResults show thahetotal displacements increased if the uncertainty of flying tivas considered’he
optimized schedule, howevés,more robustvhich cansatisfy capacity constraints uarious scenarios

Key Words: Slot Allocation Multi-airport System Uncertainty Model, Chandgonstraint
1. Introduction 2. Literature review

Slot allocation is an important means of air traffic flow The earliest worlon MAS may be traced badio 2008
managementvhich can effectively balance air transport when the U.S. Joint Development and Planning Office
demand anairportcapacity At a strategic level, slot al- (JDPO)first defineda multi-airpott,Yasa cluster of air-
location for a single airport can improve the efficiencyPorts served by multiple airports that are in close geo-
and effectiveness of the utilization of existing resourcesgraphical proximity and interdependent on each other for
Over the decadeghe constraints and depeencies be- nPound and outbound air routessich thaMAS forms a
tween different airports in a mulgiirport system(MAS) metroplex (a combination of metropolltan_ a_md _complex).
have becomenoreprominent mainly due to the conflict Slotmanagemenproblems can be classified intiree

. . ) . . categories: strategic, tactical, and ptectical. Most
in using shared departure/arrival fixes and rovuteadi- . . .

. X . . .. scholars studied thsot allocatiorproblem at the tactical
tionally, slot allocation has to consider airspace capacit

; ) i Yievel to determine the best strategy for dynamically
Howe_ver, thereanay conflict between fllghts f.rom differ- matching air traffic demandnd capacityln 2017, Zo-
ent airports at a shared departure/arrival fix when allogyrafos et al. conducted a review of the current research
cating slots for each airport individually. Thusismec-  on the slot allocatioproblem at the strategic stage and
essary to considell theairports at the same time fslot  the declaed capacity modeling. Thegointed outhere is
allocationto alleviatecongestion and delay in the whole the need fofurtherresearch to explore optimization ob-
region. jectives of the model anthe need teenrich them with
The EstimatedTime Over (ETO)fix of flight hasto be  equity, resource utilization and environmental consider-
calculatedfrom the planned departuiarival time of  ations. Future modsican be incorporateidines' toler-
flights and the routélying time. The flying time varies ~ ance and acceptability of flight allocation results, or to
due totraffic flow managementweatherairportconges-  develop stable and feasible models that capture the com-
tion, etc., which makes tHETO uncertainlit leadsto the ~ PI€xity and dynamics of airport operations and weather

fact that the flight flow through théix within a certain Uncertainty?In 2018, Ribeiro et al. proposed a novel pri-
time windowvaries ority-based mlti-objectiveslotallocation mode(PSAM,
X %riority -based multiobjective flight time allocation

In this paper, we propose a model that considers bOtmodel), which is compliant with IATA regulatiorisin

airport declared cgpacity ahd a'irspace(fix) capaci.ty, 83019, Z. Ye et al. developedl linear integer program-

yvell as theuncertainty of flying time for slot allocation ming model to determine whether implementation diffi-

in a MAS culty can be used as a new mechanism to weaken grand-
fathering rights for the slot allocationThe results
showed that by weight setting, the implementation
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difficulty can be significantly reduced without causing MAS that consider th@ncertainty of flyng time in the
excessive shifts and disruptions instiig priorities? In terminal airspace. In this paper, wdevelopeda robust
2021, Zografo®t al. considered the blocking problem of programming model to improve the overall adaptability
assigning flight moments at coordinated airports and proand robustness of the optimization scheme
posed a new model f@lotassignment that considers the
regularity of schedules by limiting the range of assigne@. Model
times.In 2022, Shui Xiaoyu et aéstablshed aslot allo-
cation model consideing the fairness between airpsrt Theobjective of thanodel in this paper is to minimize
and used the Gini coefficient as a measure to comparbe total displacements of flights givesonstraints from
different optimizationplans based on peak demand andairportdeclaredcapacity, the capacity of kdixesin the
off-peak demané. airspace and the operating rules, dhd uncertainty of
Researchlwork on uncertainty in air traffic flow man- flying timeson the routes. The following reasonable as-
agementates back to 2000&n 2003, Wanke et al. de- sumptions are made before proceeding with the modeling.
veloped a modefor airspace demand forecasting analy- Assumptionl. Theslotin this paper does not refer to
sis based on prototype TFM decision support system ola point in time, but a timslice. Each segment has a start
servations that quantifies NAS airspace demand forecastime and lengthAirports can use these time periods to
ing. The statistical distribution of forecastrors allows land and take off flights.
the development of new techniques to display and exploit Assumption 2The turnaround time of a flight musot
sector demand forecasts with known uncertairfliedn begreater than the maximum turnaround tionéess than
2008, Hafner et al. trietb improve the predictability of the minimum turnaround time. The turnaround time is the
airline schedules by enhancinige capability of flight  time interval between the arrival of the preceding flight
schedules to resist Ground Delay Progi(&DP) and in- and the departure of the following flight, during which
clement weather. They proposed strategic search heurieperations such as passengediag and unloading, air-
tics to greatly improve the reliability of airline schedulescraft refueling, etc. need to be completed.
by assigning airport takeoff and landing time slots to Assumption 3We only consider flights from airports
each flight in a schedule in amerk of airpors.”) In within the MAS. We donot consider the flight takeoff
2011, Agogino et al. investigated linear programmingand landing times and turnaround times at airports out-
modelsand nonlinear evolutionary algorithms for solving side the MAS
largescale air traffic optimizatiorproblems. Theyar- Assumption 4 Fix capacityhasto be calculated from
guedthat both methods suffer from perfection assump-historical data. Wesetraffic volumeduring periodsvith
tions and thatmodel robustness may be flawed whensignificantflight delays as the capacity.
there is uncertainty in the problethln 2014, Luca Assumption 5The frequency of differerflying time
Corolli et al. developed two stochastic programmingobservedn the historical data is equal to the probability
models based on the certairgingle-airport model pro- of occurringin the future Thus,the probability of fying
posed by Zografos et &. Then the model iapplied b  time can be obtained by fitting the historical data.
European airports, where a set of test cases showed a ®41. Model Description
tal of 58% reduction in delay¥) In 2020, Jacquillat ad- The inputs of the model in this paper are 1) the original
dressed the problem of tactical operational procedurefight schedule of the MAS?2) the capacity of each air-
and strategic planning interventions being treated in isoport and fix and 3) thelying time from each airport to
lation in air traffic managmen. An integrated model of thefix.
airport network strategy and tactiés proposed that The output is the optimized flight schedule. The deci-
jointly optimizes planning interventions and groundsion variables of the model are set as follows
waiting operations across a network of airports under op- X" / ¥i®P:0-1 variable, Ti= 1 means that flight is sched-

erational uncertainty? uled to arrivédepart no earlier than time slitafter optimiza-
In summary, mangtudies have addresd slot alloca- tion; T;= 0 otherwise.i Fp# T
tion problems for a single airport, or studied tactical air ';: Thetotal displacemergof flight i. The unitof displace-

traffic flow management problems under uncertainty ment is5 minutes i *F
However, nostudyhasbeendoneon slot allocation in a The othemodel parameters are shown in Table 1.

Table 1. Model notation and description.

Notation Description

T Setof time slotsthroughout the dayt 1,2,3... T
F Setof flights in the MAS

Q Setof fixes in the MAS.

Setconnecting flight pairén the MAS.

R /deep Setof arrival/departureflights of airportk in the MAS. deep, R o F
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Setof arrival/departureflights in the MASpassindfix g.
Setof airports in the MAS

]
]

Minimum turnaround time betweeaonnecting flights

Maximum turnaround time betwe@onnecting flights

a7 i?ep 1if arrival/departure time of flight is notearlier than time slicetiefore optimization0 otherwise.i F® T

S/ §3p Arrival/Departure timeslotthat flight iis scheduled before optimizationi. * F

K2 / Kdep The airport of arrival/departure flight i ¢ F

f’[f("(;r / ftggp Fly time of arrival/departure route between airpogridfix g. K K,q Q

NKE" / NKStep Arrival/Departure flight number of airportik time periodt. k K,¢ T

NQY" / N(gfp Arrival/Departure flight number dfix qin time periodt. q Q¢ T

c’ /Cgte‘)/ Cft” Arrival/Departure/Total capacity of airpoktin timeperiodt. Kk K,¢ T

Dyt Total capacity ofix qin time periodt. Q¢ T
ithigt Mathematical expectation and variancechfnce thaflight i pasesfix qin timeperiodt. i F,g Q,t
th gt Mathematical expectation and variancetrafific passingix qin time periodt. 0 Q¢ T

ety / etd Optimized scheduled arrival/departure slot of flight

tm The last time slothat flightsmust beadjusted to in slot allocation

3.2. Objective 3.22. Turnaround constraints for connectingflights

The objective of the model is toinimizethetotal dis-
placementf all the flights. The calculation of thalis-
placemerd for each flight is given by Eq2).

Constraints(9) and (10) are connectinfgjght turna-
round constraints. For connectifiights, Eq. (9) limits
the turnaround time to be greater than the minincom-

) I nectingtime. Eq. (10) limits the turnaround time to be
minZ i () less than the maximum connectitige.
je

PR T AR ©

- :T Xi:Elrr g\rr i Far t-IT

i' @5. @) | arr ep i d
ZUXSQP Zo 1 F L ST L (10)
te te

3.3. Certainty constraints 3.23. Airport capacity constraints

3.2.1. Existence of flights Each airporhas its arrival/departure declared capacity
Eq. (3)-(6) ensure that decision variables are set to aithat set the limitation of slot§henumber ofarrival and

initial of 1 and ending of 0 throughout the ddyach  departureflights at airporti in a time periodcannot ex-

flight is assigned at least one time slot ceed the specified capacity. Hd.1) and Eq(12) give

the calculation of the arrivednd departure traffic for

dep ; de
Xiw 1 i B () each time perioof airport Eq. (13) is the arrivatapac-
dp o i plep @ ity Ilmlt of airport. Eq.(1_4) is the departurg ca_pa_cny limit
Xt of airport, ad Eq. (15) is the total capacity limit of the
airport.
arr 1 | Far; 5
)("1 ®) NKﬁrr : ',t" 1”1 (11)
Xlé’ltr;n 0’ | F qr (6) i -deep
3.22. Uniqueness of flights NKI?tep | xlep ep, (12)
Constraints(7) and (8) are flight uniqgueness con- i,Flkdep ' '
straints The decision variablemust be monotonically
d_ecreasmg W|th_t|me, ensuring that each flight is as- NK2T €27t Te k K (13)
signed at most fime slot.
X ot F o0 FEP (7) NKEP €8Pt Te kK (14)
ioof, ot i R (8) NK2™ NKEP @' t Tk K (15)
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3.24. Fix capacity constraints o N

There are shared arrivaind departurdixes in the I X ofer Xp o1
MAS. The capacity of fix determines the number of i Fg e kT
flights that fix can serve per unit timgq. (16) and Eg. d d § 5 (21)
. . - | xdep - xdep 3N P
(17) give the calculation of the arrival and departure T TR L qt” qt
flight traffic passing fixq in time periodt. In this case, i FyPle kP

the passng time of the arrivdteparturdlight is derived As a result, the constraint of Eq. (20) can be trans-
from the planned time of the flight and the flying timeformed as Eq. (22).

from the airport to the fixEq. (18) is the capacity con-
straint of fixes Again, the arrival and departuretraffic | Nl Nl 8§

cannot exceed the capacity of theifixany time period ——— g L
q i
NG L Ty e O I
i gar e klarr t f[Ech 1t 1 ftg§p© qt..
q i FlePle ke ©
dep l dep dep 8 arr ep
NQy X Xy (D L N (22)
i Fderje ke Q Vv
a qt ¢ ©
NQE™ NP BY t Teg Q (18) ) Dqtvz S ’
3.3. Uncertainty constraints @ © 1
3.3.1. ChanceConstraint Establishment where R, it pgtl i@«
In Eq.(16) andEq. (17), thearrival and departureaf- i F, '.i Fy
fic passing a certain fiin a certain time period depend o )
only on the decision variablegiowever, in practice, Where ) denotes the distribution function of the

whether arrival or departurethe airporito-fix flying standard normal distribution. Eq. (25) and Eq. (26) give
time is not a certaintwalue, but a random variable fol- the solutions for the expectation and variance oftaft
lowing certaindistributiors. Therefore, for a specific set fic passindfix qin time periodt.

of decision variables, tharrival and departure traffic of let X, qar Xe 1par Xy qar
a certain fixin a certaintime windowis also a random b a K
variable. Based on the above discussige,will use the I

chanceconstraints imobust optimization method snlve and etg tX ftig
the uncertainty problemWhere Dis the violationproba- t
bility of the chance constraint, showitige degree of vi-
olation that the decision maker magcept. R B Xy e
rr ep ]
PNQY NG® 8 1tD t T, a Q (19 PHY et t 1 P wta t 0 (23)
3.32. Chanc_econstralnt transformation P etg i Pt T
From equations (16), (17) and (18), we have
P NQY" NP O d 2§ &
l{f E Xi far E. Xt mar
| Sl N 8 M © ¢ M © (24)
l it ftfl;' it 1 ftlf‘ér . 2
i E e KT - (20 i Pi P
dep dep § - Thus, Eqg. (19) can be transformed into Eq. (25).
Xt ftgep X1 ﬁfgp© Dat: 0. ps
H dey de
i Fy Ple kP © ) qt qt:: 1t 0 (25)
12
8 dep dep § “ ©
arr i b » .
For Xy sar Xat L and  x° e Xp 1 g Eq. (26) can be obtained from the distribution function
of the standard normal distribution.
They can be considered as random variables obeying M tyt1 p (26)
some distribution. According to Lyapunotheorem, ‘{}t

whenn is large, the sum ai random variables approxi- 35
mately obeys a normal distribution, whican be ex- T
pressed akq. (21).

Solution approach

The model is implemented using Python with Gurobi
solver. The optimization problem in this paper is mixed
integer programming, which is one of the namvex
programming The parametetNonConvex is set to 2.
The model is run on Window 10 with @3t operating
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systemwith 16GB RAM and i7 processor.

. capachy
4. Case study N A |

4.1. Experiment setup
4.1.1. Experiment subject

In this paper, the Guangdomtpng KongMacao
Greater Bay Area of China is selected for the stdhe
MAS includes five airports, Guangzhou Baiyun Interna-
tional Airport (ZGGG), Shenzhen Baoan International
Airport (ZGSZ), Zhuhai Jinwan Airport (ZGSD), Macau
International Aiport (VMMC) and Huizhou Pingtan Air-
port (ZGHZ). Since the flights of Hong Kong Interna-

Number of sheduled operations

tional Airport are basically isolated from other airports, 0300 06:00 0900 1200 1500 1800 2100  00:00
they are not considere&igure 1shows the structure of Time of Day b
airspace of the MASIt can be seen that the airspace of Fig.3. Traffic change in YIN.

the MAS is complex Several airports have to share use ] ] ]

of a single departure/arrival fix. The departure fixYIN, in theMAS, is selected for the

study offlying time uncertaintybecause othe following
considerations

First, a total of 462 flightpassed through YIN on De-
cember 21, 2019t can be seen from Fig that the flight
traffic passing through YIN point ranks the third and the
traffic accounts for a relatively high percentage.

Second, YIN is a common departure point for five air-
ports in theMAS. Thus it is representative to select this
pointfor the ogimization consideringflying time uncer-
tainty in the MAS

Third, YIN has a high number of flights during peak
hours and exceeds the capacity constriaggquently Ef-
fectively solving thdlying time uncertainty to this point
will provide a reference for othdixes. Figure 3 shows
the traffic of YIN before optimization, where the flying
time from the airport to the fixs calculated using the

Fig. 1. MAS in the Guangdondtong KongMacao Greater Bay median of historical data. From the figure, it is clear

Area see that the traffiof YIN fix is very high and full of ups

The flight schedul®en December 212019 isobtained and downs, and there are magintswhere the capacity
asthe model input. Statistically, a total of 2,969 flights limit is exceeded.
wereplanned for theMAS including 1,494arrivalflights 412 Parametersetup
and 1,47Xeparturdlights. In this paper, the length of easlotis set to 5 minutes
The airport capacity is set according to the declaeed
pacity of the airport; théix capacity is set with reference
to China'sTechnical Specification for Airport Moment
Capacity Assessmenthe time window of capacity is di-
vided into 15minute capacity and-hour capacity The
minimum connectingtime of flights is set to 30 minutes
and the maximum connectirtgne is set to 180 minutes
accordingto China'sCivil Aviation Normal Flight Statis-
tics MeasuresThe probability distribution of flying time
from airports tdixes is obtained by fitting thactual his-
torical flight operation data of December 2019. The fre-
guency distribution of flying timé&om ZGSZ to YIN for
departing flights is shown in Figl. It can be seen that
the flying time from ZGSZ to YIN presents an obvious
Fix form of multi-peak distributionshowingthe uncertainty
of flying time.

e

500

[ ) w 'S
=1 =3 S
S =3 S

Number of sheduled operations

=3
S

Fig. 2. Fix traffic without optimization (only part shown).
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Fig. 4. Flying timedistribution of departuréights from ZGSZ to

YIN.

For the uncertainty constraint, ve®uned the flying
time from each airport to YINAccording to the histori-
cal distribution, twocases withequalprobability are di-
vided. Each case corresponds to a value of flying time
For thecertaintyconstraint, thélying timeis taken as the
median of the historical data. The rangdlpihg time for
the uncertainty constraint and the certaiotydition are
shown in Table 2.

Table2. Theflying time from different airports to YIN(unit: 5

minuteg
Airport uncertainty certainty
VMMC {4,5} 5
ZGGG {2,3} 3
ZGHZ {4,5} 5
ZGSD {5,5} 5
Z2GSZ {4,4} 4

We adjust the violation probability to different values
to examinethe optimization results under different ac-
ceptance leveldNe set thecertaintymodel output as the
control group, andthen obtain a total of four different
optimizationschedulesThe differences between the dif-

time. This leads to the situatiothat a single flight may
affect more than one time window of the.fikherefore,
consideringpossibleflying time in uncertainty optimiza-
tion could make the model more conservative, while the
total displacenens increase as the probability of viola-
tion decreases.

In theory, the violation probability should be as small
as possibleHowever,it is necessary toonsiderthe eco-
nomic cost of the totadisplacemergdue to different vi-
olation probabilities. In this paper, after verifying the op-
timization results of various values of violation probabil-
ity, we found that £0.4 can basically satisfy the capacity
constraint in various scenarios, aBeD.3 can completely
satisfy the capacity constraint in various scenarios.
Therefore,a smallervalue of Os no longer necessary,
otherwise it will only increase the economic cost brought
by unnecessarilying time displacemerg
Table3. Optimization resultof the four schemegunit: 5 minute9

Schemes Displacemerg
Schemel(certainty) 570
Scheme2( 3=0.4) 647
Scheme3(3=0.3) 756
Scheme4(B=0.2) 975

4.2. Traffic at departure fix YIN

The purpose of considering flying tinuncertainty is
to enhance the robustness of the optimization resihis
optimizedflight scheduleshould satisfy the capacity con-
straint offixeswith differentflying time for different op-
eration scenarios. To examittgs effect,a total of 8ex-
perimental scenarios S1 t88 are set up, and the flying
time from the airport to the fixdiffer in the 8 experi-
mental scenarios, as shown in Table 4.

ferent optimization strategies are analyzed in the follow-

ing section.
4.2. Resuls
4.1. Slotdisplacemens

The totalschedulalisplacemerg corresponding to the
four different optimization schemes are showtaible 3.
We can see thdhetotal displacemergaregraduallyin-
creagdwith the decreasingf violation probability. This
is mainly caused by the increasinglyrist conditions of
the chance constraint.

In the certainty scenarig the flying times from each
airport to the fixare constant valuesThus, theETO is
completely determined by the flighteparturéarrival
time. Therefore a flight will only play an impact on the
traffic within a specific time windowef thefix.

Under uncertainty constraint, the flying tim&om
each airport to the fiks uncertain, and the ETS deter-
mined by both the departuearival time and the flying

Table4. Flying timeunder different experimental scenarisnit:
5 minute$

Airport S1 S2 S3 S4 S5 s6 S7 S8
VMMC 5 4 5 4 5 4 5 4
ZGGG 3 3 2 2 3 3 2 2
ZGHZz 5 5 5 5 4 4 4 4
ZGSD 5 5 5 5 5 5 5 5
2GSz 4 4 4 4 4 4 4 4

07 . seoa

Exceeding number

S8

S1 S2 S3 S4 S5

Scenario

S6 S7

Fig.5. Traffic exceeding the capacity of YIN.



Proc. of the IWAC2022

We tested the fourahemesin different experimental
scenarios We investigatedwhether different optimiza-
tion plans in different experimental scenarios will cause 3|
the traffic to exceed the capacity. We found ttheet op-
timization results of schem& and 4 can be perfectly
coverall possible scenarios. Schenteand 2 may have
traffic exceeding the capacity. In different scenarios, the
flights that exceed the capacity of scheimand scheme
2 are shown in Fig5.

It can be seen from the figure that the traffic is over
capacity in7 scenarios from S2 to 38 the basic model.
While the optimized results of schem®gly slightly ex-
ceeds the capacity in a few cases. Even if the traffic ex .
ceeds the fix capacity, the number of fligigselatively 0300 06:00 0900 1200 1500 1800 2100  00:00

non-opt uncer-opt-alpha=0.4
cer-opt uncer-opt-alpha=0.3
uncer-opt-alpha=0.2

””” capacity

Number of sheduled operations

small.In the following,we select S1S6 and S8 for fur- Time of Day e
theranalysis. Thdix traffic changes corresponding to S1, Fig.7. Traffic in YIN under S6

S6and S8 are shown in Fig§, 7 and8.

In the figures, nonopt represents theriginal traffic
calculated from schedule.eGopt represents the traffic
obtained by basic model while unceropt-al-
pha=0.4/0.3/0.2 represents the traffic with uncertainty
optimizationcorresponding to different values of @b-
serving the traffic changm YIN in different operation
scenarios with dferent optimizationschemeswe can
havethe following conclusions.

For scenario 1, the traffiwith certaintyoptimization
and uncertainty optimization does not exceed the capac-
ity of the fix.

However, forS6 and S8, the traffiwith certaintyop-
timization exceeds the capacity of thve, while thetraf-
fic with uncertainty optimization hardlgxceeds the ca-
pacity. Only traffic in scheme 2 under S6 exceeds by one
flight. From this it can beoncludedhat when the viola-
tion probability in thechanceconstraint reaches a certain 3
threshold, even if there istill a violation probability,
there will be noviolation of the capacity constraint in ac-
tual operation.

Fig.8. Traffic in YIN under S8

Exploration of violation probability value
We further explore the impact of different values of
the violation probability on the results, and we obtain the
relationshipsetween the totalisplacemergand the vi-
olation probability Das shown in Fig9. As can be seen

non-opt uncer-opt-alpha=0.4 from the figure, the objectivlinction changes in a step-
cer-opt uncer-opt-alpha=0.3 . . - . .
2 capacity uncer-opt-alpha=0.2 like manner with the probability of violation, because the
number of flights within 15 minutes is not continuous
1oy ; variables but discretevariables

Number of sheduled operations

03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time of Day 22-Dec

Fig. 6. Traffic in YIN under S1.

Fig.9. The relationshipbetweentotal displacementand D
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5. Conclusion 4)Z.J. Ye, Y. W. Li, J. T. Bai, and X. X. Zheng, “Performance com-
paring and analysis for slot allocation moddihformation (Swit-

. - zerland) vol. 10, no. 6, Jun. 2019, doi: 10.3390/info10060188.
In this paperwe developed a chan straint model 5)SHUI X Y, WANG Y J, Wang Z M, Slot allocation of multiairport

that tak?S the uncertainty of route flying time into ac- system considering airport fairnessitta Aeronautica et Astro-
countto improve the robustness MAS schedulesThe nautica Sinica vol. 44, no. 327212, 2023, doi: 10.7527/S1000-
chanceconstraint is introduced for the capacity con- 6893.2022.27212.

straintof fixes within the MAS.Gurobi solveris applied  ©)C- S;Mwa”kg’ M. B. f""_”?h‘f"m'_D' P G;ee”baé’m' ‘Zr.'dt.A' ‘]'fM"’t‘SiIO‘

. . . nis, easuring acertainty In alrspace demand preaictions for traf-
tofind thethlmalSOluuo_nSA case StUdy of Guangdong fic flow management applications,” 2003. doi: 10.2514/6.2003-
Marco-Hong KongMAS is presented. 5708.

1) The chanceconstraintmodel is more conservative 7)F. B. Hafner and B. S. Embry, Improving Airline Schedule Relia-
than thecertaintyoptimization modelThis is supported bility Using A Strategic MultiObjective Runway Slot Assignment
by the fact that the totallot displacements are higher in 8)ie‘1mh '_"eu”moi ‘3’0'58(4}&2208&  two air traffic schedu

. . AgOogIino an . RI0S, obustness ot two alir traffic scheauling
the former model than that in the !ater model . approaches  to  departure  uncertainty,” 2011,  doi:

_2) The cost_qfuncertamtymodel.|ncrease.s as the vio-  10.1109/DASC.2011.6095996.
lation probability decrease$here isa negative correla- 9)K. G. Zografos, Y. Salouras, and M. A. Madas, “Dealing with the
tion between the value of the objective functi@ueand efficient allocation of sc@e resources at congested airports,”
the valueof D Transportation Research Part C: Emerging Technologied. 21,

. . _no. 1, pp. 244256, 2012, doi: 10.1016/j.trc.2011.10.008.
3) The uncertaintymodel is more robust than the cer 10) L. Corolli, G. Lulli, and L. Ntaimo, “The time slot allocation prob-

t?‘inty opt_imization modelWe found th?-t the former op- lem under uncertain capacityTransportation Research Part C:
timized flight schedule calme well applied in variousp- Emerging Technologies vol. 46, pp. 1629, 2014, doi:
eration scenarios with different values of rotlging 10.1016/j.trc.2014.05.004. . .
time without exceeding the capacity of éx LK. Wr‘;’“;g a’_]th'fJf_""cq“'k']'aé' ‘;.A Stoc';as“c '”i?geégrogtr.ammgg ap-
. . . . proac 0 air traffic scheduling and operation erations Re-
4) The optimization resultsvith D=0.3 can basically search vol. 68 no. 5, pp. 1375:402, Sep. 2020, doi

satisfy the capacity constraints der different experi- 10.1287/0pre.2020.1985.
mental scenarios. Consideritigeslotdisplacemergcost

and operational delay cost, it is suggested that 0.3 is suf-

ficient for the actual optimization.

There arestill several limitationof the current work,
and a few ofareas that are deservia future research.

1) We only consideredhe uncertaintyconstraint of
one typical fixin the MAS The flying times toother
fixes are treated aonstant valuesThe uncertainty con-
strains of al fixes canbe considered in the future.

2) Lyapunovtheorem is used to solve the chance con-
straint Its applicability condition should be that the
larger the sample size is, the better. The results for such
a situation in this paper will have soneerors Thus,
other solving methodshould be done later

3) The time windows in the fixcapacity and airport
capacity constraints are in a roolling form. A rolling
form will be considered in the future to make the capacity
constraints more stringent.
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