Étude quantitative des chaînes de Markov par perturbation de leur noyau.

Résumé : Le développement de la modélisation des phénomènes aléatoires par chaînes de Markov pose le problème du contrôle de convergence des algorithmes de simulation. Les méthodes de simulation par chaînes de Markov ergodiques s'appuient sur la loi des grands nombres, qui stipule que pour toute distribution initiale et toute fonction f, la moyenne empirique converge vers la moyenne de f, calculée avec l'unique probabilité invariante de la chaîne. Il convient alors, de déterminer un nombre suffisant de pas de simulation pour approximer, de façon relativement précise, la moyenne d'une certaine fonction par sa moyenne empirique. Plusieurs travaux ont étudié la vitesse de convergence de la chaîne vers son régime stationnaire. Cependant même en régime stationnaire, le problème du contrôle demeure, puisqu'il s'agit de calculer un intervalle de confiance pour un niveau fixé. Deux démarches existent pour déterminer le nombre de pas suffisants. Soit majorer directement la probabilité de déviation entre la moyenne empirique et la moyenne de la fonction sous la probabilité invariante, soit utiliser le théorème central limite. La première majoration est appelée borne de Chernoff et la seconde méthode invoque une borne de Berry-Esséen. Le point de départ de cette thèse fut l'inégalité de Gillman et plus particulièrement la méthode utilisée ; à savoir les outils présentés dans le livre de Kato sur la théorie des perturbations des opérateurs linéaires. L'exploitation plus poussée de cette méthode nous a permis d'obtenir les résultats suivant :•amélioration des bornes de Gillman et Dinwoodie : mise en évidence des comportements gaussien pour des petites déviations et poissonien pour les grandes déviations ;•extension au temps continu ;•extension aux espaces d'états quelconques, sous l'hypothèse d'un trou spectral pour le noyau de la chaîne et le générateur infinitésimal du processus ;•obtention d'une borne inférieure à la probabilité de déviation lorsque le processus (la chaîne) est réversible et d'espace d'états fini ;•amélioration et extension de la borne de Berry-Esséen obtenue par B. Mann.
Type de document :
Thèse
Probabilités [math.PR]. Université Toulouse 3 Paul Sabatier, 1998. Français
Liste complète des métadonnées

Littérature citée [49 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/tel-01084797
Contributeur : Céline Smith <>
Soumis le : jeudi 20 novembre 2014 - 10:37:00
Dernière modification le : samedi 20 mai 2017 - 01:01:41
Document(s) archivé(s) le : vendredi 14 avril 2017 - 20:53:30

Identifiants

  • HAL Id : tel-01084797, version 1

Collections

Citation

Pascal Lezaud. Étude quantitative des chaînes de Markov par perturbation de leur noyau.. Probabilités [math.PR]. Université Toulouse 3 Paul Sabatier, 1998. Français. 〈tel-01084797〉

Partager

Métriques

Consultations de la notice

159

Téléchargements de fichiers

135