T. Mitchell, Machine Learning, 1997.

. Lipowang, Support Vector Machines: Theory and Applications, 2005.

R. Burbidge and B. Buxton, An introduction to support vector machines for data mining Keynote papers, pp.12-15, 2001.

V. N. Vapnik and A. Y. Chervonenkis, On the uniform convergence of relative frequencies of events to their probabilities, Theory of Probability & Its Applications, pp.264-280, 1971.

V. Vapnik, Statistical Learning Theory, 1998.

V. Vapnik, The Nature of Statistical Learning Theory, 1995.

J. C. Christopher and . Burges, A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery, 1998.

. Lin, M. Keng-pei, and . Chen, Efficient kernel approximation for largescale support vector machine classification, Proceedings of the Eleventh SIAM International Conference on Data Mining, 2011.

B. Schölkopf and A. Smola, Learning with kernels, 2002.

M. Anthony and N. Biggs, PAC learning and artificial neural networks, 1995.

O. Chapelle, Support Vector Machines: Induction Principles, Adaptive Tuning and Prior Knowledge, Thesis, 2004.

F. Cucker and D. X. Zhou, Learning theory: an approximation theory viewpoint. No. 24, 2007.
DOI : 10.1017/CBO9780511618796

. Sridhar, K. S. Banavar, S. Sheth, and . Grabbe, Airspace complexity and its application in air traffic management, Europe Air Traffic Management R&D Seminar, 1998.

T. Chan, Total Variation Image Restoration: Overview and Recent Developments, Mathematical Models of Computer Vision, 2005.
DOI : 10.1007/0-387-28831-7_2

E. Giusti, Minimal surfaces and functions of bounded variation, 1984.
DOI : 10.1007/978-1-4684-9486-0

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of computational physics, vol.493, pp.357-393, 1983.

. Goldluecke and . Bastian, The Natural Vectorial Total Variation Which Arises from Geometric Measure Theory, SIAM Journal on Imaging Sciences, vol.5, issue.2, pp.537-563, 2012.
DOI : 10.1137/110823766

C. Tony, F. , and S. Jianhong, Image Processing And Analysis: Variational , Pde, Wavelet, And Stochastic Methods, Society of Industrial and Applied Mathematics, 2005.

T. F. Chan and J. J. Shen, Variational image inpainting, Communications on Pure and Applied Mathematics, vol.9, issue.2, pp.579-619, 2005.
DOI : 10.1002/cpa.20075

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. Chambolle and P. Lions, Image recovery via total variation minimization and related problems, Numerische Mathematik, vol.76, issue.2, pp.167-188, 1997.
DOI : 10.1007/s002110050258

R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, vol.10, issue.6, p.1217, 1994.
DOI : 10.1088/0266-5611/10/6/003

G. Wahba, The Ravished Image. St, 1985.

S. Masnou and J. Morel, Level lines based disocclusion, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269), 1998.
DOI : 10.1109/ICIP.1998.999016

J. Shen and T. F. Chan, Mathematical Models for Local Nontexture Inpaintings, SIAM Journal on Applied Mathematics, vol.62, issue.3, pp.1019-1043, 2002.
DOI : 10.1137/S0036139900368844

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, vol.3, issue.5, pp.577-685, 1989.
DOI : 10.1002/cpa.3160420503

URL : http://nrs.harvard.edu/urn-3:HUL.InstRepos:3637121

R. Chan, T. Chan, and A. Yip, Numerical Methods and Applications in Total Variation Image Restoration, Handbook of Mathematical Methods in Imaging, 2011.

T. F. Chan, Superresolution image reconstruction using fast inpainting algorithms, Applied and Computational Harmonic Analysis, vol.23, issue.1, pp.3-24, 2007.
DOI : 10.1016/j.acha.2006.09.005

URL : http://doi.org/10.1016/j.acha.2006.09.005

Y. Law, H. Lee, and A. Yip, A multi-resolution stochastic level set method for Mumford-Shah image segmentation, IEEE Trans Image Process, vol.17, issue.12, pp.2289-2300, 2008.

T. Chan, S. Esedo¯-glu, and M. Nikolova, Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models, SIAM Journal on Applied Mathematics, vol.66, issue.5, pp.1632-1648, 2006.
DOI : 10.1137/040615286

G. Strang, Maximal flow through a domain, Mathematical Programming, vol.19, issue.2, pp.123-143, 1983.
DOI : 10.1007/BF02592050

C. Cumming, The Total Variation Approach to Approximate Hyperbolic Wave Equations

X. Bresson and T. F. Chan, Fast dual minimization of the vectorial total variation norm and applications to color image processing, Inverse Problems and Imaging, vol.2, issue.4, pp.455-484, 2008.
DOI : 10.3934/ipi.2008.2.455

D. Zenzo and S. , A note on the gradient of a multi-image Computer vision, graphics, and image processing 33, pp.116-125, 1986.

G. Sapiro, Vector-valued active contours Computer Vision and Pattern Recognition, Proceedings CVPR'96, 1996.

J. L. Scanff, Uveitis associated with multiple sclerosis, Multiple Sclerosis Journal, vol.100, issue.3, pp.1-3, 2007.
DOI : 10.1212/WNL.33.11.1444

N. Marchomichelakis, Multiple sclerosis in Foster S and itale A Diagnosis and treatment of uveitis. philadelphia: WB. Sanders company, 2002.

J. Jordan, Intermediate uveitis in childhood preceding the diagnosis of multiple sclerosis: a 13-year follow-up, American Journal of Ophthalmology, vol.135, issue.6, pp.885-891, 2003.
DOI : 10.1016/S0002-9394(02)01702-6

. Birchmk, Retinal Venous Sheathing and the Blood-Retinal Barrier in Multiple Sclerosis, Archives of Ophthalmology, vol.114, issue.1, pp.34-43, 1996.
DOI : 10.1001/archopht.1996.01100130032005

D. Bachman, Granulomatous uveitis in neurological disease., British Journal of Ophthalmology, vol.69, issue.3, pp.192-198, 1985.
DOI : 10.1136/bjo.69.3.192

M. Patt, Vascularites rétiniennes proliférantes et slérose en plaque, J Fr Ophtalmmol, vol.264, pp.381-386, 2003.

J. Pederson, Pathology of parsplanitis, Am J Ophtalmol, vol.1986, pp.762-774

A. Vine, Severe Periphlebitis, Peripheral Retinal Ischemia, and Preretinal Neovascularization in Patients With Multiple Sclerosis, American Journal of Ophthalmology, vol.113, issue.1, pp.28-32, 1992.
DOI : 10.1016/S0002-9394(14)75748-4

R. Nussenblatt, Fundamentals and clinical practice, pp.354-63

D. A. Jabs, R. B. Nussenblatt, and J. T. Rosenbaum, Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop, American journal of ophthalmology, vol.1403, pp.509-516, 2005.

D. Miller, Clinically isolated syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis, diagnosis, and prognosis, The Lancet Neurology, vol.4, issue.5, pp.281-288, 2005.
DOI : 10.1016/S1474-4422(05)70071-5

S. Wild, Global Prevalence of Diabetes: Estimates for the year 2000 and projections for 2030, Diabetes Care, vol.27, issue.5, pp.1047-1053, 2004.
DOI : 10.2337/diacare.27.5.1047

S. Harding, D. Broadbent, and C. Neoh, Sensitivity and specificity of photography and direct ophthalmology in screening for sight threatening eye disease: the Liverpool Diabetic Eye study, British Medical Journal, pp.311-1131, 1995.

F. Herbert, M. J. Jelinek, and . Cree, Automated image detection of retinal pathology, 2010.

A. Hoover, V. Kouznetsova, and M. Goldbaum, Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response, IEEE Transactions on Medical Imaging, vol.19, issue.3, pp.203-310, 2000.
DOI : 10.1109/42.845178

S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, Detection of blood vessels in retinal images using two-dimensional matched filters, IEEE Transactions on Medical Imaging, vol.8, issue.3, pp.263-369, 1989.
DOI : 10.1109/42.34715

O. Brinchmann-hansen and O. Engvold, Microphotometry of the blood column and the light streak on retinal vessels in fundus photographs, Acta Ophthalmologica, vol.9, issue.Suppl 179, pp.9-19, 1986.
DOI : 10.1111/j.1755-3768.1986.tb00698.x

O. Brinchmann-hansen and H. Heier, Theoretical relationships between light streak characteristics and optical properties of retinal vessels, Acta Ophthalmological Supplement, vol.179, pp.33-37, 1986.

P. H. Gregson, Z. Shen, R. C. Scott, and V. Kozousek, Automated Grading of Venous Beading, Computers and Biomedical Research, vol.28, issue.4, pp.291-304, 2000.
DOI : 10.1006/cbmr.1995.1020

N. Chapman, N. Witt, X. Goa, A. Bharath, A. V. Stanton et al., Computer algorithms for the automated measurement of retinal arteriolar diameters, British Journal of Ophthalmology, vol.85, issue.1, pp.75-79, 2001.
DOI : 10.1136/bjo.85.1.74

P. Bankhead, C. Scholfield, J. Mcgeown, and T. Curtis, Fast Retinal Vessel Detection and Measurement Using Wavelets and Edge Location Refinement, PLoS ONE, vol.12, issue.3, p.2012
DOI : 10.1371/journal.pone.0032435.s001

URL : http://doi.org/10.1371/journal.pone.0032435

L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D: Nonlinear Phenomena, vol.60, issue.1-4, pp.259-268, 1992.
DOI : 10.1016/0167-2789(92)90242-F

J. Starch and F. Murtagh, Astronomical image and signal processing: looking at noise, information and scale, IEEE Signal Processing Magazine, vol.18, issue.2, pp.30-34, 2001.
DOI : 10.1109/79.916319

J. Olivo-marin, Extraction of spots in biological images using multiscale products, Pattern Recognition, vol.35, issue.9, 1989.
DOI : 10.1016/S0031-3203(01)00127-3

J. Starck, J. Fadili, and F. Murtagh, The Undecimated Wavelet Decomposition and its Reconstruction, IEEE Transactions on Image Processing, vol.16, issue.2, pp.297-309, 2007.
DOI : 10.1109/TIP.2006.887733

URL : https://hal.archives-ouvertes.fr/hal-00080092

K. Vermeer, F. Vos, H. Lemij, and A. Vossepoel, A model based method for retinal blood vessel detection, Computers in Biology and Medicine, vol.34, issue.3, pp.209-219, 2004.
DOI : 10.1016/S0010-4825(03)00055-6

E. Lee, Choosing nodes in parametric curve interpolation, Computer-Aided Design, vol.21, issue.6, pp.363-370, 1989.
DOI : 10.1016/0010-4485(89)90003-1

N. Chapman, N. Witt, X. Gao, A. Bharath, and A. Stanton, Computer algorithms for the automated measurement of retinal arteriolar diameters, British Journal of Ophthalmology, vol.85, issue.1, pp.74-79, 2001.
DOI : 10.1136/bjo.85.1.74

H. Herier and O. Brinchmann-hansen, Releable measurements from fundus photographs in the presence of focusing errors, Invest Ophthalmol Vis Sci, vol.30, pp.674-677, 1989.

S. Kaushik, A. Tan, P. Mitchell, and J. Wang, Prevalence and Associations of Enhanced Retinal Arteriolar Light Reflex, Ophthalmology, vol.114, issue.1, pp.113-120, 2007.
DOI : 10.1016/j.ophtha.2006.06.046

T. Metelitsina, J. Grunwald, J. Dupont, G. Ying, and C. Liu, Effect of viagra on retinal vein diameter in AMD patients, Experimental Eye Research, vol.83, issue.1, pp.128-132
DOI : 10.1016/j.exer.2005.11.012

O. Brinchmann-hansen and H. Heier, Theoretical relations between light streak characteristics and optical properties of retinal vessels, Acta Ophthalmologica, vol.9, issue.Suppl 179, pp.33-37, 1986.
DOI : 10.1111/j.1755-3768.1986.tb00701.x

H. Li, W. Hsu, M. Lee, and T. Wong, Automatic Grading of Retinal Vessel Caliber, IEEE Transactions on Biomedical Engineering, vol.52, issue.7, pp.1352-1355, 2005.
DOI : 10.1109/TBME.2005.847402

J. Lowell, A. Hunter, D. Steel, A. Basu, and R. Ryder, Measurement of Retinal Vessel Widths From Fundus Images Based on 2-D Modeling, IEEE Transactions on Medical Imaging, vol.23, issue.10, pp.1196-1204, 2004.
DOI : 10.1109/TMI.2004.830524

C. Chang and L. Chih-jen, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, pp.1-27, 2011.
DOI : 10.1145/1961189.1961199

M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. Rudnicka et al., Blood vessel segmentation methodologies in retinal images ??? A survey, Computer Methods and Programs in Biomedicine, vol.108, issue.1, pp.407-433, 2012.
DOI : 10.1016/j.cmpb.2012.03.009

E. Ricci and R. Perfetti, Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Classification, IEEE Transactions on Medical Imaging, vol.26, issue.10, 2007.
DOI : 10.1109/TMI.2007.898551

L. Gang, O. Chutatape, and S. M. Krishnan, Detection and measurement of retinal vessels in fundus images using amplitude modified second-order Gaussian filter, IEEE Transactions on Biomedical Engineering, vol.49, issue.2, pp.168-172, 2002.
DOI : 10.1109/10.979356

B. Zhang, L. Zhang, L. Zhang, and F. Karray, Retinal vessel extraction by matched filter with first-order derivative of Gaussian, Computers in Biology and Medicine, vol.40, issue.4, pp.438-445, 2010.
DOI : 10.1016/j.compbiomed.2010.02.008

M. Al-rawi, M. Qutaishat, and M. Arrar, An improved matched filter for blood vessel detection of digital retinal images, Computers in Biology and Medicine, vol.37, issue.2, pp.262-267, 2007.
DOI : 10.1016/j.compbiomed.2006.03.003

M. Amin and H. Yan, High speed detection of retinal blood vessels in fundus image using phase congruency, Soft Computing ? A Fusion of Foundations, pp.1-14, 2010.

I. Liu and Y. Sun, Recursive tracking of vascular networks in angiograms based on the detection-deletion scheme, IEEE Transactions on Medical Imaging, vol.12, issue.2, pp.334-341, 1993.
DOI : 10.1109/42.232264

Z. Liang, M. S. Rzeszotarski, L. J. Singerman, and J. M. Chokreff, The detection and quantification of retinopathy using digital angiograms, IEEE Transactions on Medical Imaging, vol.13, issue.4, pp.619-626, 1994.
DOI : 10.1109/42.363106

K. K. Delibasis, Automatic model-based tracing algorithm for vessel segmentation and diameter estimation. Computer methods and programs in biomedicine 100, pp.108-122, 2010.
DOI : 10.1016/j.cmpb.2010.03.004

URL : http://dspace.lib.ntua.gr/handle/123456789/20238

O. Chutatape, Z. Liu, and S. M. Krishnan, Retinal blood vessel detection and tracking by matched Gaussian and Kalman filters, Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol.20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No.98CH36286), pp.3144-3149, 1998.
DOI : 10.1109/IEMBS.1998.746160

P. Kelvin, H. Ghassan, and A. Rafeef, Live-vessel: extending live wire for simultaneous extraction of optimal medial andboundary paths in vascular images, Proceedings of the 10th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2007.

F. Zana and J. Klein, Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation, IEEE Transactions on Image Processing, vol.10, issue.7, pp.1010-1019, 2001.
DOI : 10.1109/83.931095

A. M. Mendonca and A. Campilho, Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction, IEEE Transactions on Medical Imaging, vol.25, issue.9, pp.1200-1213, 2006.
DOI : 10.1109/TMI.2006.879955

Y. Yang, S. Huang, and N. Rao, An Automatic Hybrid Method for Retinal Blood Vessel Extraction, International Journal of Applied Mathematics and Computer Science, vol.18, issue.3, pp.399-407, 2008.
DOI : 10.2478/v10006-008-0036-5

URL : http://doi.org/10.2478/v10006-008-0036-5

K. Sun, Z. Chen, S. Jiang, and Y. Wang, Morphological Multiscale Enhancement, Fuzzy Filter and Watershed for Vascular Tree Extraction in Angiogram, Journal of Medical Systems, vol.23, issue.1, 2010.
DOI : 10.1007/s10916-010-9466-3

M. S. Miri and A. Mahloojifar, Retinal Image Analysis Using Curvelet Transform and Multistructure Elements Morphology by Reconstruction, IEEE Transactions on Biomedical Engineering, vol.58, issue.5, pp.1183-1192, 2011.
DOI : 10.1109/TBME.2010.2097599

K. Akita and H. Kuga, A computer method of understanding ocular fundus images, Pattern Recognition, vol.15, issue.6, pp.431-443, 1982.
DOI : 10.1016/0031-3203(82)90022-X

R. Nekovei and Y. Sun, Back-propagation network and its configuration for blood vessel detection in angiograms, IEEE Transactions on Neural Networks, vol.6, issue.1, pp.64-72, 1995.
DOI : 10.1109/72.363449

C. Sinthanayothin, Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images, British Journal of Ophthalmology, vol.83, issue.8, pp.83-902, 1999.
DOI : 10.1136/bjo.83.8.902

J. Staal, Ridge-Based Vessel Segmentation in Color Images of the Retina, IEEE Transactions on Medical Imaging, vol.23, issue.4, pp.501-509, 2004.
DOI : 10.1109/TMI.2004.825627

J. V. Soares, J. J. Leandro, R. M. Cesar, J. , H. F. Jelinek et al., Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification, IEEE Transactions on Medical Imaging, vol.25, issue.9, pp.1214-1222, 2006.
DOI : 10.1109/TMI.2006.879967

S. Salem, N. Salem, and A. Nandi, Segmentation of retinal blood vessels using a novel clustering algorithm (RACAL) with a partial supervision strategy, Medical & Biological Engineering & Computing, vol.18, issue.3, pp.45-261, 2007.
DOI : 10.1007/s11517-006-0141-2

D. Marin, A. Aquino, M. Gegundez-arias, and J. Bravo, A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment Invariants-Based Features, IEEE Transactions on Medical Imaging, vol.30, issue.1, pp.146-158, 2011.
DOI : 10.1109/TMI.2010.2064333

M. Prandini, Toward Air Traffic Complexity Assessment in New Generation Air Traffic Management Systems, IEEE Transactions on Intelligent Transportation Systems, vol.12, issue.3, pp.809-818, 2011.
DOI : 10.1109/TITS.2011.2113175

URL : https://hal.archives-ouvertes.fr/hal-01020894

. Ing, Andrea Ranieri Combinatorial Exchange Models for a User-Driven Air Traffic Flow Management in Europe

B. Sridhar, K. S. Seth, and S. Grabbe, Airspace complexity and its application in air traffic management metric, EUROPE ATM R&D seminar, vol.2, 1998.

P. Flener, J. Pearson, M. Agren, C. Garcia-avello1, M. Celiktin et al., Air traffic complexity resolution in multi-sector planning using constraint programming, Air Traffic Management R&D Seminar, 2007.

S. Mondoloni and D. Liang, Airspace fractal dimension and applications, Fourth USA, 2001.

K. Lee, E. Feron, and A. Pritchett, Describing Airspace Complexity: Airspace Response to Disturbances, Journal of Guidance, Control, and Dynamics, vol.32, issue.1, pp.210-222, 2009.
DOI : 10.2514/1.36308

L. Pallottino, E. Feron, and A. Bicchi, Conflict resolution problems for air traffic management systems solved with mixed integer programming, IEEE Transactions on Intelligent Transportation Systems, vol.3, issue.1, pp.3-11, 2002.
DOI : 10.1109/6979.994791

D. Delahaye and S. Puechmorel, Air traffic complexity: Towards intrinsic metrics, Proc. 3rd FAA, 2000.

S. Puechmorel and D. Delahaye, New trends in air traffic complexity, ENRI International Workshop on ATM/CNS, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00938199

I. Laudeman, S. Shelden, C. Branstrom, and . Brasil, Dynamic density : an air traffic management metric, 1998.

D. Delahaye, Mathematical Models for Aircraft Trajectory Design: A Survey, EIWAC 2013
DOI : 10.1007/978-4-431-54475-3_12

URL : https://hal.archives-ouvertes.fr/hal-00913243

J. M. Histon, R. J. Hansman, B. Gottlieb, H. Kleinwaks, S. Yenson et al., Structural considerations and cognitive complexity in air traffic control, Proceedings. The 21st Digital Avionics Systems Conference, pp.1-2, 2002.
DOI : 10.1109/DASC.2002.1067894

URL : https://hal.archives-ouvertes.fr/hal-00938407

J. M. Histon, R. John-hansman, G. Aigoin, D. Delahaye, and S. Puechmorel, Introducing structural considerations into complexity metrics, 2002.

L. Song, D. Greenbaum, and C. Wanke, Predicting sector capacity for traffic flow management decision support, th AIAA Aviation Technology, Integration and Operations Conference, 2006.

L. Song, D. Greenbaum, and C. Wanke, The impact of severe weather on sector capacity, 8th USA/Europe Air Traffic Management Research and Development Seminar (ATM2009), 2009.

M. Enriquez and C. Kurcz, A simple and robust flow detection algorithm based on spectral clustering, ICRAT Conference, 2012.

A. Eckstein, Automated flight track taxonomy for measuring benefits from performance based navigation Integrated Communications, Navigation and Surveillance Conference, 2009.

A. Marzuoli, V. Popescu, and E. Feron, Two perspectives on graphbased traffic flow management, First SESAR Innovation Days, 2011.

M. Enriquez, Identifying Temporally Persistent Flows in the Terminal Airspace via Spectral Clustering, Tenth USAEurope Air Traffic Management Research and Development Seminar, 2013.

D. Delahaye, Air traffic complexity map based on non linear dynamical systems, Air Traffic Control Quarterly, vol.12, issue.4, 2004.
DOI : 10.1109/cdc.2010.5718004

URL : https://hal.archives-ouvertes.fr/hal-01004143

D. Delahaye and S. Puechmorel, Air traffic complexity based on dynamical systems, 49th IEEE Conference on Decision and Control (CDC), 2010.
DOI : 10.1109/CDC.2010.5718004

URL : https://hal.archives-ouvertes.fr/hal-00938405

R. Bartels, J. Beatty, and B. A. Barskyn, An introduction to splines for use in computer graphics and geometric modeling, Computer graphics, 1998.

T. Hearth and M. , Scientific computing, an introductory survey, Computer graphics, 2002.

C. Birkhoff and . De-boor, Piecewise polynomial interpolation and approximation , Proceeding of the General Motors Symposium of 1964, General Motors, 1964.

G. Farin and H. Dianne, The essentials of cagd, 2000.

G. Farin, Curves and surfaces for computer aided geometric design. a practical guide, 1993.

C. De-boor, A practical guide to splines, 1978.
DOI : 10.1007/978-1-4612-6333-3