. Comp and . Comp, , p.3

. Comp,

. Comp,

H. Abdi and L. Williams, Principal Component Analysis, pp.433-459
URL : https://hal.archives-ouvertes.fr/hal-01259094

M. Ankerst, OPTICS : ordering points to identify the clustering structure, ACM Sigmod record. T. 28. 2. ACM, pp.49-60, 1999.

D. Arthur and S. Vassilvitskii, k-means++ : The advantages of careful seeding, Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms, pp.1027-1035, 2007.

J. L. Bentley, Multidimensional binary search trees used for associative searching, Communications of the ACM, vol.18, pp.509-517, 1975.

J. A. Bondy, Graph Theory With Applications, p.444194517, 1976.

H. Bunke, Graph clustering using the weighted minimum common supergraph, GbRPR 2726, pp.235-246, 2003.

J. Ricardo, D. Campello, J. Moulavi, and . Sander, Density-based clustering based on hierarchical density estimates, Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp.160-172, 2013.

D. Chang, A dynamic niching clustering algorithm based on individualconnectedness and its application to color image segmentation, Pattern Recognition, vol.60, pp.31-3203, 2016.

Y. Cheng, Mean shift, mode seeking, and clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.17, pp.790-799, 1995.

K. Charles and . Chui, Multivariate splines. SIAM, 1988.

P. Arthur, N. M. Dempster, . Laird, B. Donald, and . Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the royal statistical society. Series B (methodological, pp.1-38, 1977.

B. Desgraupes, clusterCrit : Clustering indices, pp.4-5

H. Du, S. Zhao, and D. Zhang, Robust Local Outlier Detection, 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp.116-123, 2015.

J. C. Dunn, A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, Journal of Cybernetics, vol.3, pp.32-57, 1973.

M. Ester, A density-based algorithm for discovering clusters in large spatial databases with noise, vol.34, pp.226-231, 1996.

S. Thomas and . Ferguson, A Bayesian analysis of some nonparametric problems, The annals of statistics, pp.209-230, 1973.

P. Fränti, Clustering datasets, 2015.

L. Gomes, 3rd International Conference on Information Technology and Quantitative Management, ITQM 2015 Image Segmentation via Improving Clustering Algorithms with Density and Distance, vol.55, pp.1877-0509, 2015.

R. Gray, Vector quantization, IEEE Assp Magazine, vol.1, issue.2, pp.4-29, 1984.

M. A. Hearst, Support vector machines, IEEE Intelligent Systems and their applications, vol.13, pp.18-28, 1998.

S. Impedovo, More than twenty years of advancements on Frontiers in handwriting recognition, Pattern Recognition, vol.47, pp.916-928, 2014.

S. Jia, G. Tang, and J. Hu-;-de-xiaofei-he, Band Selection of Hyperspectral Imagery Using a Weighted Fast Density Peak-Based Clustering Approach, Intelligence Science and Big Data Engineering. Image and Video Data Engineering : 5th International Conference, pp.50-59, 2015.

X. Han, ;. Clustering-;-de, C. Sammut, G. I. Webb, and M. A. Boston, Encyclopedia of Machine Learning. Sous la dir, pp.564-565, 2010.

C. Stephen and . Johnson, Hierarchical clustering schemes, Psychometrika, vol.32, pp.241-254, 1967.

S. Kaski, J. Sinkkonen, and A. Klami, Discriminative clustering, Neurocomputing, vol.69, pp.18-41, 2005.

L. Kaufman and P. Rousseeuw, Clustering by means of medoids, 1987.

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological cybernetics, vol.43, pp.59-69, 1982.

B. Korte and J. Vygen, Combinatorial Optimization : Theory and Algorithms. 4th, p.9783540718437, 2007.

, La régression linéaire simple, Régression : Théorie et applications, pp.1-32, 2007.

S. Li, An efficient clustering method for medical data applications, Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), 2015 IEEE International Conference on, pp.133-138, 2015.

S. Li, Concise formulas for the area and volume of a hyperspherical cap, Asian Journal of Mathematics and Statistics, vol.4, pp.66-70, 2011.

Z. Liang and P. Chen, Delta-density based clustering with a divide-andconquer strategy : 3DC clustering, Pattern Recognition Letters, vol.73, pp.167-8655, 2016.

D. Liu, S. F. Cheng, and Y. Yang, Density Peaks Clustering Approach for Discovering Demand Hot Spots in City-scale Taxi Fleet Dataset, 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pp.1831-1836, 2015.

P. Liu, A Text Clustering Algorithm Based on Find of Density Peaks, 2015 7th International Conference on Information Technology in Medicine and Education (ITME), pp.348-352, 2015.

C. Ma, T. Ma, and H. Shan, A new important-place identification method, Computer and Communications (ICCC), 2015 IEEE International Conference on, pp.151-155, 2015.

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol.1, pp.281-297, 1967.

G. Mclachlan and T. Krishnan, The EM algorithm and extensions. T. 382, 2007.

R. Mehmood, Clustering by fast search and find of density peaks via heat diffusion, Neurocomputing, pp.925-2312, 2016.

R. Mehmood, Fuzzy Clustering by Fast Search and Find of Density Peaks, 2015 International Conference on Identification, Information, and Knowledge in the Internet of Things (IIKI), pp.258-261, 2015.

L. Miao, Comparative Analysis of Two Clustering Algorithms : K-means and FSDP (Fast Search and Find of Density Peaks, Master's Project

. Mém and . Mast, , 2015.

A. Papoulis, Signal analysis. McGraw-Hill electrical and electronic engineering series, 1977.

F. Pedregosa, Scikit-learn : Machine Learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

L. Dzung, C. Pham, . Xu, L. Jerry, and . Prince, Current methods in medical image segmentation, Annual review of biomedical engineering, vol.2, issue.1, pp.315-337, 2000.

Y. Qin, C. Zhao, and F. Gao, An iterative two-step sequential phase partition (ITSPP) method for batch process modeling and online monitoring, AIChE Journal, vol.62, pp.1547-5905, 2016.

J. O. Ramsay, Functional Data Analysis, Encyclopedia of Statistical Sciences, 2004.

C. E. Rasmussen, The infinite Gaussian mixture model, Advances in neural information processing systems, pp.554-560, 2000.

A. Robles-kelly, R. Edwin, and . Hancock, Graph edit distance from spectral seriation, IEEE transactions on pattern analysis and machine intelligence, vol.27, pp.365-378, 2005.

A. Rodriguez and A. Laio, Clustering by fast search and find of density peaks, Science, vol.344, pp.1492-1496, 2014.

H. Sak, Fast and accurate recurrent neural network acoustic models for speech recognition, 2015.

W. David and . Scott, Multivariate density estimation : theory, practice, and visualization, 2015.

M. Shevtsov, A. Soupikov, and A. Kapustin, Highly Parallel Fast KD-tree Construction for Interactive Ray Tracing of Dynamic Scenes, Computer Graphics Forum. T. 26. 3. Wiley Online Library, pp.395-404, 2007.

Y. Shi, A novel clustering-based image segmentation via density peaks algorithm with mid-level feature, Neural Computing and Applications, pp.1433-3058, 2016.

W. Bernard and . Silverman, Density estimation for statistics and data analysis. T. 26, 1986.

M. Song and D. Civco, Road extraction using SVM and image segmentation, Photogrammetric Engineering & Remote Sensing, vol.70, pp.1365-1371, 2004.

. Robert-endre-tarjan, Data structures and network algorithms. SIAM, 1983.

N. Tishby, C. Fernando, W. Pereira, and . Bialek, The information bottleneck method, 2000.

G. Wang and Q. Song, Automatic Clustering via Outward Statistical Testing on Density Metrics, IEEE Transactions on Knowledge and Data Engineering, vol.28, pp.1041-4347, 2016.

S. Wang, Clustering by Fast Search and Find of Density Peaks with Data Field, Chinese Journal of Electronics, vol.25, pp.397-402, 2016.

X. Wang and Y. Xu, Fast clustering using adaptive density peak detection, Statistical Methods in Medical Research, 2015.

Y. Wang, Clustering of Electricity Consumption Behavior Dynamics toward Big Data Applications, IEEE Transactions on Smart Grid PP, vol.99, pp.1949-3053, 2016.

H. John and . Wolfe, Pattern clustering by multivariate mixture analysis, Multivariate Behavioral Research, vol.5, pp.329-350, 1970.

J. Xie, Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors, Information Sciences, vol.354, pp.19-40, 2016.

L. Xu, Maximum margin clustering, Advances in neural information processing systems, pp.1537-1544, 2005.

J. Yu, A density peak clustering approach to unsupervised acoustic subword units discovery, 2015 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp.178-183, 2015.

. Charles-t-zahn, Graph-theoretical methods for detecting and describing gestalt clusters, IEEE Transactions on computers, vol.100, pp.68-86, 1971.

R. Zhang, An Improved Fast Search Clustering Algorithm Based on Kernel Density, 2015 IEEE International Conference on Smart City/SocialCom/SustainCom (SmartCity), pp.689-693, 2015.

W. Zhao, Face recognition : A literature survey, ACM computing surveys (CSUR), vol.35, pp.399-458, 2003.