Computation of Optimal Profiles in Descent and Approach Phases - ENAC - École nationale de l'aviation civile Accéder directement au contenu
Thèse Année : 2020

Computation of Optimal Profiles in Descent and Approach Phases

Calcul du profil optimal d'un aéronef dans les phases de descente et d'approche

Résumé

The continued increase of air traffic, which doubles every 15 years, produces large economic benefits but poses environmental issues that put at risk the sustainable development of air transport. Other factors such as jet fuel prices volatility, the introduction of new environmental regulations and intense competition in the airline industry, have stimulated in the last years research on trajectory optimization and flight efficiency topics. The Flight Management System (FMS) is an onboard avionic system, standard in all transport aircraft, which is used by flight crews to manage the lateral and vertical flight-plan. Since current avionic systems are limited in terms of computational capacity, the computations performed by their algorithms are usually done on the basis of conservative hypotheses. Thus, notorious deviations may occur between FMS computations and the actual flight profile flown by the aircraft. The goal of this thesis is to develop an onboard function, which could be integrated in future Airbus cockpits, that computes optimal trajectories, readjusts the flight strategy according to the dynamic aircraft condition and minimizes operating costs. Flight energy management principles has been used for optimizing aircraft trajectories in descent and approach phases with respect to fuel consumption, greenhouse gas and noise emissions. The proposed function has been developed on the basis of dynamic programming techniques, in particular the A* algorithm. The algorithm minimizes a certain objective function by generating incrementally the search space. The exploration of the search space gives the optimal profile that links the aircraft current position to the runway threshold, independently of the current flight mode and aircraft energy condition. Results show 13% fuel savings and a decrease of 12% in gas emissions compared with a best-in-class FMS. Furthermore, the algorithm proposes the flight strategy to dissipate the excess of energy in situations where aircraft fly too high and/or too fast close to the destination runway. A preliminary operational evaluation of the computed trajectories has been conducted in the flight simulators. These tests demonstrate that the computed trajectories can be tracked with current guidance modes, although new modes should be required to decrease the workload of flight crews. In conclusion, this paper constitutes a solid background for the generation of real-time optimal trajectories in light of the automation of descent and approach flight phases.
Le contexte actuel de croissance du trafic aérien, qui double tous les quinze ans, pose des problèmes environnementaux et remet en cause le développement durable de l'aviation. De plus, d'autres facteurs comme l'entrée en vigueur de nouveaux décrets relatifs aux questions environnementales, la volatilité des cours du pétrole et aussi la concurrence exacerbée du marché des compagnies aériennes conduisent au fait que les sujets de recherche liés à l'optimisation fine du profil de vol de l'avion et à l'amélioration de l'efficacité des opérations aériennes sont devenus des enjeux majeurs pour l'aviation. Le système de gestion du vol, ou FMS selon l'acronyme anglais, est un système de navigation embarqué, courant dans tous les avions de transport commercial, qui permet à l'équipage de gérer le plan de vol latéral et vertical. Du fait que les systèmes avioniques aient des performances limitées, les algorithmes embarqués font des calculs sur la base d'hypothèses très conservatrices. Ceci conduit à des écarts notoires entre les calculs du FMS et le profil réellement volé par l'avion dans un environnement dynamique du vol. L'objectif de cette thèse est donc de développer une fonction bord intégrée au concept de poste de pilotage des futurs cockpit Airbus, permettant de générer des trajectoires optimisées mais aussi tenant compte de l'environnement dynamique de l'avion. Pour cela, cette nouvelle fonction bord qui a été développée adapte la stratégie et le profil de vol de façon régulière pour minimiser le coût global de l'opération. Les principes de gestion énergétique d'un aéronef sont utilisés pour optimiser le profil vertical de vol dans les phases de descente et d'approche dans le but de réduire la consommation carburant, les émissions de gaz à effet de serre et potentiellement le bruit généré par les moteurs et les surfaces aérodynamiques. La fonction proposée est basée sur les principes de la programmation dynamique et plus particulièrement sur l'algorithme A*. Elle cherche à minimiser une fonction de coût en traversant un espace de recherche généré au fur et à mesure que l'algorithme avance dans ses calculs. Non seulement la trajectoire résultante est optimale mais aussi relie la position courante de l'avion avec le seuil de piste de l'aéroport d'arrivée indépendamment du mode de guidage et des conditions énergétiques, ce qui est une nouveauté par rapport au FMS.[...]
Fichier principal
Vignette du fichier
2020TOU30026a.pdf (3.2 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-03004543 , version 1 (13-11-2020)

Identifiants

  • HAL Id : tel-03004543 , version 1

Citer

Ramon Andreu Altava. Computation of Optimal Profiles in Descent and Approach Phases. Mathematical Software [cs.MS]. Université Paul Sabatier - Toulouse III, 2020. English. ⟨NNT : 2020TOU30026⟩. ⟨tel-03004543⟩

Collections

ENAC STAR OPTIM
134 Consultations
828 Téléchargements

Partager

Gmail Facebook X LinkedIn More