Compact relaxations for polynomial programming problems - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année : 2012

Compact relaxations for polynomial programming problems

(1) , (2, 3) , (4) , (3) , (5, 6)
1
2
3
4
5
6

Résumé

Reduced RLT constraints are a special class of Reformulation- Linearization Technique (RLT) constraints. They apply to nonconvex (both continuous and mixed-integer) quadratic programming problems subject to systems of linear equality constraints. We present an extension to the general case of polynomial programming problems and discuss the derived convex relaxation. We then show how to perform rRLT constraint generation so as to reduce the number of inequality constraints in the relaxation, thereby making it more compact and faster to solve. We present some computational results validating our approach.
Fichier principal
Vignette du fichier
585.pdf (197.12 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00938524 , version 1 (03-04-2014)

Identifiants

Citer

Sonia Cafieri, Pierre Hansen, Lucas Létocart, Leo Liberti, Frédéric Messine. Compact relaxations for polynomial programming problems. SEA 2012, 11th International Symposium on Experimental Algorithms, Jun 2012, Bordeaux, France. pp 75-86, ⟨10.1007/978-3-642-30850-5_8⟩. ⟨hal-00938524⟩
481 Consultations
219 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More