Fast transform based preconditioners for 2D finite-difference frequency-domain : Waveguides and periodic structures

Abstract : The fields scattered by dielectric objects placed inside parallel-plate waveguides and periodic structures in two dimensions may efficiently be computed via a finite-difference frequency-domain (FDFD) method. This involves large, sparse linear systems of equations that may be solved using preconditioned Krylov subspace methods. Our preconditioners involve fast discrete trigonometric transforms and are based on a physical approximation. Simulations show significant gain in terms of computation time and iteration count in comparison with results obtained with preconditioners based on incomplete LU (ILU) factorization. Moreover, with the new preconditioners, the required number of iterations is independent of the grid size.
Type de document :
Article dans une revue
Journal of Computational Physics, Elsevier, 2008, 227 (16), pp 7755-7767. 〈10.1016/j.jcp.2008.04.030〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01021585
Contributeur : Laurence Porte <>
Soumis le : mardi 23 septembre 2014 - 12:15:04
Dernière modification le : mardi 30 janvier 2018 - 18:08:05
Document(s) archivé(s) le : mercredi 24 décembre 2014 - 20:49:01

Fichier

395.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alexandre Chabory, B.P. De Hon, A.G. Tijhuis, W.H.A Schilders. Fast transform based preconditioners for 2D finite-difference frequency-domain : Waveguides and periodic structures. Journal of Computational Physics, Elsevier, 2008, 227 (16), pp 7755-7767. 〈10.1016/j.jcp.2008.04.030〉. 〈hal-01021585〉

Partager

Métriques

Consultations de la notice

111

Téléchargements de fichiers

153