Attribute-Driven Edge Bundling for General Graphs with Applications in Trail Analysis

Abstract : Edge bundling methods reduce visual clutter of dense and occluded graphs. However, existing bundling techniques either ignore edge properties such as direction and data attributes, or are otherwise computationally not scalable, which makes them unsuitable for tasks such as exploration of large trajectory datasets. We present a new framework to generate bundled graph layouts according to any numerical edge attributes such as directions, timestamps or weights. We propose a GPU-based implementation linear in number of edges, which makes our algorithm applicable to large datasets. We demonstrate our method with applications in the analysis of aircraft trajectory datasets and eye-movement traces.
Type de document :
Communication dans un congrès
PacificVis 2015, 8th IEEE Pacific Visualization Symposium, Apr 2015, Hangzhou, China. IEEE
Liste complète des métadonnées

Littérature citée [45 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01158976
Contributeur : Laurence Porte <>
Soumis le : mardi 2 juin 2015 - 11:50:53
Dernière modification le : lundi 9 octobre 2017 - 13:18:03
Document(s) archivé(s) le : mardi 15 septembre 2015 - 09:27:38

Fichier

ADEB-final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01158976, version 1

Collections

ENAC | LII

Citation

Vsevolod Peysakhovich, Christophe Hurter, Alexandru Telea. Attribute-Driven Edge Bundling for General Graphs with Applications in Trail Analysis. PacificVis 2015, 8th IEEE Pacific Visualization Symposium, Apr 2015, Hangzhou, China. IEEE. 〈hal-01158976〉

Partager

Métriques

Consultations de
la notice

71

Téléchargements du document

141