Improved density peak clustering for large datasets

Vincent Courjault-Radé 1 Ludovic D'Estampes 2 Stéphane Puechmorel 1
2 MAIAA-PROBA
MAIAA - ENAC - Laboratoire de Mathématiques Appliquées, Informatique et Automatique pour l'Aérien
Abstract : Clustering is the usual way of classifying data when there is no a priori knowledge, especially about the number of classes. Within the frame of big data analysis, the computational effort needed to perform the clustering task may become prohibitive and motivated the construction of several algorithms or the adaptation of existing 1ones, as the well known K-means algorithm . Recently, Rodriguez and Laio proposed an algorithm that clusters efficiently by fast searching local density peaks that are sufficiently distant one from the others. However it is able to work on small datasets only and is highly sensitive to the value of tunable parameters. In this paper we propose Improved Density Peak Clustering (IDPC), a new algorithm designed for large datasets based on [17] which corrects the shortcomings mentioned above. Thanks to our Cover Map (CM) procedure iterated with a decreasing locally-adaptive window (ICMDW), we are able to build both a localisation map and a multidimensional density map. The nature of the density map, which fits perfectly with the approach of [17], allows us to compute the different steps with much less operations. It carries unsensitive parameters, supports last improvements on cluster centers selection and potentially allows new improvements.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01353574
Contributeur : Stephane Puechmorel <>
Soumis le : vendredi 12 août 2016 - 10:55:48
Dernière modification le : dimanche 14 août 2016 - 15:58:40
Document(s) archivé(s) le : dimanche 13 novembre 2016 - 11:14:55

Fichier

improved-density-peak.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

  • HAL Id : hal-01353574, version 1

Collections

Citation

Vincent Courjault-Radé, Ludovic D'Estampes, Stéphane Puechmorel. Improved density peak clustering for large datasets. 2016. <hal-01353574>

Partager

Métriques

Consultations de
la notice

428

Téléchargements du document

266