Dynamic airspace configuration by genetic algorithm

Abstract : With the continuous air traffic growth and limits of resources, there is a need for reducing the congestion of the airspace systems. Nowadays, several projects are launched, aimed at modernizing the global air transportation system and air traffic management. In recent years, special interest has been paid to the solution of the dynamic airspace configuration problem. Airspace sector configurations need to be dynamically adjusted to provide maximum efficiency and flexibility in response to changing weather and traffic conditions. The main objective of this work is to automatically adapt the airspace configurations according to the evolution of traffic. In order to reach this objective, the airspace is considered to be divided into predefined 3D airspace blocks which have to be grouped or ungrouped depending on the traffic situation. The airspace structure is represented as a graph and each airspace configuration is created using a graph partitioning technique. We 2 optimize airspace configurations using a genetic algorithm. The developed algorithm generates a sequence of sector configurations for one day of operation with the minimized controller workload. The overall methodology is implemented and successfully tested with air traffic data taken for one day and for several different airspace control areas of Europe.
Type de document :
Article dans une revue
Journal of Traffic and Transportation Engineering (English Edition), 2017, 4 (3), pp.300 - 314. 〈10.1016/j.jtte.2017.05.002〉
Liste complète des métadonnées

Littérature citée [62 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01522033
Contributeur : Laurence Porte <>
Soumis le : mardi 25 juillet 2017 - 19:16:59
Dernière modification le : jeudi 27 juillet 2017 - 01:03:41

Fichier

JTTE_2016_55-revision mode.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Pas de modification 4.0 International License

Identifiants

Collections

Citation

Marina Sergeeva, Daniel Delahaye, Catherine Mancel, Andrija Vidosavljevic. Dynamic airspace configuration by genetic algorithm. Journal of Traffic and Transportation Engineering (English Edition), 2017, 4 (3), pp.300 - 314. 〈10.1016/j.jtte.2017.05.002〉. 〈hal-01522033〉

Partager

Métriques

Consultations de
la notice

52

Téléchargements du document

19