Accéder directement au contenu Accéder directement à la navigation
Chapitre d'ouvrage

Optimality Principles for Fuzzy Dual Uncertain Systems

Abstract : This chapter considers the extension of the calculus of variations to the optimization of a class of fuzzy systems where the uncertainty of variables and parameters is represented by symmetrical triangular membership functions. The concept of fuzzy dual numbers is introduced, and the consideration of the necessary differentiability conditions for functions of dual variables leads to the definition of fuzzy dual functions. It is shown that when this formalism is adopted to represent performance indexes for uncertain optimization problems, the calculus of variations can be used to establish necessary optimality conditions as an extension to this case of the Euler-Lagrange equation. Then the chapter discusses the propagation of uncertainty when the fuzzy dual formalism is adopted for the state representation of a time continuous system. This leads to the formulation of a fuzzy dual optimization problem for which necessary optimality conditions, corresponding to an extension of Pontryagine's optimality principle, are established.
Type de document :
Chapitre d'ouvrage
Liste complète des métadonnées
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : samedi 6 avril 2019 - 15:50:10
Dernière modification le : jeudi 10 février 2022 - 11:22:11




Felix Mora-Camino, Hakim Bouadi, Roger Marcelin Faye, Lunlong Zhong. Optimality Principles for Fuzzy Dual Uncertain Systems. Optimization Techniques for Problem Solving in Uncertainty, IGI GLobal, pp.47-72, 2018, 9781522550914. ⟨10.4018/978-1-5225-5091-4.ch003⟩. ⟨hal-02091801⟩



Consultations de la notice