Accéder directement au contenu Accéder directement à la navigation
Communication dans un congrès

Predicting and Analyzing US Air Traffic Delays using Passenger-centric Data-sources

Abstract : This paper aims at presenting a novel way of predicting and analyzing air traffic delays using publicly available data from social media with a focus on Twitter data. Three different machine learning regressors have been trained on this 2017 passenger-centric dataset and tested for the prediction up to five hours ahead of air traffic delays and cancellations for the first two months of 2018. Comparing and analyzing different accuracy measures of their prediction performances show that this dataset contains useful information about the current state and short-term future state of the air traffic system. The resulting methods yield higher prediction accuracy than traditional state-of-the-art and off-the-shelf time-series forecasting techniques performed on flight-centric data. More over a post-training feature importance analysis conducted on the Random Forest regressor allowed a simplification and a refining of the model, leading to a faster training time and more accurate predictions. This paper is a first step in predicting and analyzing air traffic delays leveraging a real-time publicly available passenger-centered data source. The results of this study suggest a method to use passenger-centric data-sources both as an estimator of the current state of air traffic delays as well as an estimator of the short-term state of air traffic delays in the United States in real-time.
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [34 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-02178441
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : samedi 13 juillet 2019 - 16:29:23
Dernière modification le : mercredi 3 novembre 2021 - 05:38:49

Fichier

ATM_Seminar_2019_paper_59.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02178441, version 1

Collections

Citation

Philippe Monmousseau, Daniel Delahaye, Aude Marzuoli, Eric Féron. Predicting and Analyzing US Air Traffic Delays using Passenger-centric Data-sources. ATM 2019, 13th USA/Europe Air Traffic Management Research and Development Seminar, Jun 2019, Vienne, Austria. ⟨hal-02178441⟩

Partager

Métriques

Consultations de la notice

210

Téléchargements de fichiers

159