Accéder directement au contenu Accéder directement à la navigation
Nouvelle interface
Communication dans un congrès

Ant Colony Systems for Optimizing Sequences of Airspace Partitions

Abstract : In this paper, we introduce an Ant Colony System algorithm which finds optimal or near-optimal sequences of airspace partitions, taking into account some constraints on the transitions between two successive airspace configurations. The transitions should be simple enough to allow air traffic controllers to maintain their situation awareness during the airspace configuration changes. For the same reason, once a sector is opened it should remain so for a minimum duration. The Ant Colony System (ACS) finds a sequence of airspace configurations minimizing a cost related to the workload and the usage of manpower resources, while satisfying the transition constraints. This approach shows good results in a limited time when compared with a previously proposed $A$ * algorithm on some instances from the french air traffic control center of Aix (East qualification zone) where the $A$ * algorithm exhibited high computation times.00
Type de document :
Communication dans un congrès
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-02547511
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : lundi 20 avril 2020 - 10:08:48
Dernière modification le : mercredi 3 novembre 2021 - 04:18:06

Fichier

aida2020_dg_camera_ready.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

David Gianazza, Nicolas Durand. Ant Colony Systems for Optimizing Sequences of Airspace Partitions. AIDA-AT 2020, 1st conference on Artificial Intelligence and Data Analytics in Air Transportation, Feb 2020, Singapour, Singapore. pp.ISBN: 978-1-7281-5381-0, ⟨10.1109/AIDA-AT48540.2020.9049206⟩. ⟨hal-02547511⟩

Partager

Métriques

Consultations de la notice

86

Téléchargements de fichiers

98