Semi-parametric Regression based on Machine Learning Methods for UAS Stall Identification - Archive ouverte HAL Accéder directement au contenu
Communication Dans Un Congrès Année :

Semi-parametric Regression based on Machine Learning Methods for UAS Stall Identification

(1, 2) , (1) , (2) , (2)
1
2

Résumé

A semi-parametric regression methodology is formulated to identify the unsteady lift characteristics of a small UAS undergoing dynamic stall. Based on the trailing edge separation model of Leishmann and Beddoes, the nonlinear evolution of the separation point is formulated so that it can be estimated by non-parametric Machine Learning methods. Validation of the methodology is presented with the identification of the lift coefficient based on quasi-steady wind tunnel tests.
Fichier principal
Vignette du fichier
Semi_parametric_Regression_based_on_Machine_Learning_Methods_for_UAS_Stall_Identification.pdf (412.99 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03286034 , version 1 (13-07-2021)

Identifiants

Citer

Vincent Guibert, Mathieu Brunot, Murat Bronz, Jean-Philippe Condomines. Semi-parametric Regression based on Machine Learning Methods for UAS Stall Identification. 19th IFAC Symposium on System Identification, Jul 2021, Padova (virtual), Italy. ⟨10.1016/j.ifacol.2021.08.355⟩. ⟨hal-03286034⟩
74 Consultations
85 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More