Flight Simulation of a MAKO UAV for Use in Data-Driven Fault Diagnosis

Abstract : Last decade witnessed the rapid increase in number of drones of various purposes. This pushes the regulators to rush for safe integration strategies in a way to properly share the utilization of airspace. Accommodating faults and failures is one of the key issues since they constitute the bigger chunk in the occurrence reports available. The hardware limitations for these small vehicles point the utilization of analytical redundancy rather than the usual practice of hardware redundancy in the conventional flights. In the course of this study, fault detection and diagnosis for aircraft is reviewed. Then a nonlinear model for MAKO aircraft is simulated to generate faulty and nominal flight data. This platform enables to generate data for various flight conditions and design machine learning implementations for fault detection and diagnosis.
Type de document :
Communication dans un congrès
IMAV 2017, 9th international microair vehicle conference, Sep 2017, Toulouse, France
Liste complète des métadonnées

Littérature citée [11 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-01610970
Contributeur : Laurence Porte <>
Soumis le : jeudi 5 octobre 2017 - 11:45:14
Dernière modification le : mardi 14 août 2018 - 18:20:02

Fichier

paper 29.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01610970, version 1

Collections

Citation

Elgiz Baskaya, Murat Bronz, Daniel Delahaye. Flight Simulation of a MAKO UAV for Use in Data-Driven Fault Diagnosis. IMAV 2017, 9th international microair vehicle conference, Sep 2017, Toulouse, France. 〈hal-01610970〉

Partager

Métriques

Consultations de la notice

100

Téléchargements de fichiers

138