On the geodesic distance in shapes K-means clustering - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Entropy Année : 2018

On the geodesic distance in shapes K-means clustering

(1) , (1) , (2) , (2)
1
2

Résumé

Using Information Geometry tools, we represent landmarks of a complex shape as probability densities in a statistical manifold. Then, in the setting of shapes clustering through a K-means algorithm, we evaluate the discriminative power of two different shapes distances. The first, derived from Fisher-Rao metric, is related with the minimization of information in the Fisher sense and the other is derived from the Wasserstein distance which measures the minimal transportation cost.
Fichier principal
Vignette du fichier
entropy_20_00647_manuscript_v2.pdf (298.5 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01852144 , version 1 (31-07-2018)
hal-01852144 , version 2 (04-10-2018)

Identifiants

Citer

Stefano Antonio Gattone, Angela de Sanctis, Stéphane Puechmorel, Florence Nicol. On the geodesic distance in shapes K-means clustering. Entropy, 2018, Special Issue Selected Papers from 4th International Electronic Conference on Entropy and Its Applications, 20 (9), pp 647. ⟨10.3390/e20090647⟩. ⟨hal-01852144v2⟩

Collections

ENAC INSMI DEVI
152 Consultations
333 Téléchargements

Altmetric

Partager

Gmail Facebook Twitter LinkedIn More