Accéder directement au contenu Accéder directement à la navigation
Pré-publication, Document de travail

Reducing Computational Cost in the Invariant Unscented Kalman Filtering For Attitude Estimation

Abstract : This article proposes a new formulation to derive the invariant unscented Kalman filter (IUKF) algorithm for attitude estimation problem, where both state and sigma-point are considered as a transformation group parametrization of the filter. The detailed IUKF equations are presented in this article. The filter equations relie on the same ideas as the usual Unscented Kalman Filter (UKF), but it uses a geometrically adapted correction term based on an invariant output error. The specific interest of the proposed formulation is that only the invariant state estimation errors between the predicted state and each sigma point must be known to determine the predicted outputs errors. As we have already computed the set of invariant state errors during the prediction step, the computation cost to find the covariance matrix of the invariant state estimation in the update step is greatly reduced.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [43 références]  Voir  Masquer  Télécharger

https://hal-enac.archives-ouvertes.fr/hal-02106315
Contributeur : Laurence Porte Connectez-vous pour contacter le contributeur
Soumis le : mardi 19 mars 2019 - 10:59:34
Dernière modification le : mercredi 3 novembre 2021 - 05:38:31
Archivage à long terme le : : jeudi 20 juin 2019 - 13:31:52

Fichier

IEEE_TAC_IUKF_Condomines.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02106315, version 2

Collections

Citation

Jean-Philippe Condomines, Gautier Hattenberger. Reducing Computational Cost in the Invariant Unscented Kalman Filtering For Attitude Estimation. 2019. ⟨hal-02106315v2⟩

Partager

Métriques

Consultations de la notice

187

Téléchargements de fichiers

192